Insights into a clock's fidelity through vesicular encapsulation

封装(网络) 忠诚 计算机科学 纳米技术 材料科学 计算机安全 电信
作者
Alexander Li,Andy LiWang,Anand Bala Subramaniam
标识
DOI:10.1101/2024.10.13.617916
摘要

ABSTRACT The single-celled cyanobacterium, Synechococcus elongatus , generates circadian rhythms with exceptional fidelity and synchrony despite their femtoliter volumes. Here, we explore the mechanistic aspects of this fidelity, by reconstituting the KaiABC post-translational oscillator (PTO) in cell-mimetic giant vesicles (GUVs) under well-defined conditions in vitro . PTO proteins were encapsulated with a coefficient of variation that closely matched protein variations observed in live cells. Using fluorescently labeled KaiB and confocal microscopy, we were able to measure circadian rhythms generated by thousands of encapsulated PTOs at the single-vesicle level for several days as a function of protein concentration and GUV size. We find that PTO fidelity decreased with decreasing levels of encapsulated PTO proteins and in smaller GUVs. We also observed that in encapsulated PTOs, a significant fraction of KaiB localized to GUV membranes like it does in cyanobacteria. A mathematical model that uses empirical bulk concentration and stoichiometry limitations suggests that cyanobacteria overcome challenges to fidelity by expressing high levels of PTO proteins along with the CikA and SasA proteins, which buffer stochastic variations in the levels of KaiA and KaiB, respectively. Further, the model suggests that the transcription-translation feedback loop (TTFL) contributes at most a small percentage to the overall fidelity of the cyanobacterial circadian clock under constant conditions but is essential for maintaining phase synchrony. Our results are the first experimental demonstration of populations of synthetic cells that can autonomously keep circadian time. Additionally, the approach of using bulk relationships to understand complex phenomena in cell-like systems could be useful for understanding other collective behavior important in biology, such as liquid-liquid phase separation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助鼻揩了转去采纳,获得30
1秒前
1秒前
jacs111发布了新的文献求助10
2秒前
3秒前
5秒前
Sean完成签到,获得积分10
6秒前
6秒前
丘比特应助songly95采纳,获得10
6秒前
所所应助迅速的网络采纳,获得10
6秒前
6秒前
guajiguaji发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
pluto应助长角的南瓜采纳,获得10
10秒前
10秒前
小破网完成签到 ,获得积分10
10秒前
10秒前
路过蜻蜓完成签到,获得积分10
11秒前
斯文败类应助啦啦啦采纳,获得10
11秒前
Drogoo发布了新的文献求助10
11秒前
咩咩羊完成签到,获得积分10
12秒前
Silence完成签到,获得积分10
12秒前
甜叶菊发布了新的文献求助10
12秒前
大概是Hachi8完成签到,获得积分10
12秒前
12秒前
茜zi发布了新的文献求助10
13秒前
monly发布了新的文献求助100
13秒前
子辰超正经完成签到,获得积分20
14秒前
15秒前
16秒前
yy完成签到,获得积分10
16秒前
17秒前
bare发布了新的文献求助10
18秒前
早日毕业发布了新的文献求助10
20秒前
20秒前
任小萱发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463