清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing trainee performance in obstetric ultrasound through an artificial intelligence system: randomized controlled trial

医学 考试(生物学) 医学物理学 随机对照试验 超声波 物理疗法 医学教育 外科 放射科 古生物学 生物
作者
Ting Lei,Qiao Zheng,Jianxing Feng,L. Zhang,Qian Zhou,M. He,Min-Huei Lin,Hongning Xie
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:64 (4): 453-462 被引量:1
标识
DOI:10.1002/uog.29101
摘要

ABSTRACT Objective Performing obstetric ultrasound scans is challenging for inexperienced operators; therefore, the prenatal screening artificial intelligence system (PSAIS) software was developed to provide real‐time feedback and guidance for trainees during their scanning procedures. The aim of this study was to investigate the potential benefits of utilizing such an artificial intelligence system to enhance the efficiency of obstetric ultrasound training in acquiring and interpreting standard basic views. Methods A prospective, single‐center randomized controlled study was conducted at The First Affiliated Hospital of Sun Yat‐sen University. From September 2022 to April 2023, residents with no prior obstetric ultrasound experience were recruited and assigned randomly to either a PSAIS‐assisted training group or a conventional training group. Each trainee underwent a four‐cycle practical scan training program, performing 20 scans in each cycle on pregnant volunteers at 18–32 gestational weeks, focusing on acquiring and interpreting standard basic views. At the end of each cycle, a test scan evaluated trainees' ability to obtain standard ultrasound views without PSAIS assistance, and image quality was rated by both the trainees themselves and an expert (in a blinded manner). The primary outcome was the number of training cycles required for each trainee to meet a certain standard of proficiency (i.e. end‐of‐cycle test scored by the expert at ≥ 80%). Secondary outcomes included the expert ratings of the image quality in each trainee's end‐of‐cycle test and the discordance between ratings by trainees and the expert. Results In total, 32 residents and 1809 pregnant women (2720 scans) were recruited for the study. The PSAIS‐assisted trainee group required significantly fewer training cycles compared with the non‐PSAIS‐assisted group to meet quality requirements ( P = 0.037). Based on the expert ratings of image quality, the PSAIS‐assisted training group exhibited superior ability in acquiring standard imaging views compared with the conventional training group in the third ( P = 0.012) and fourth ( P < 0.001) cycles. In both groups, the discordance between trainees' ratings of the quality of their own images and the expert's ratings decreased with increasing training time. A statistically significant difference in overall trainee–expert rating discordance between the two groups emerged at the end of the first training cycle and remained at every cycle thereafter ( P < 0.013). Conclusion By assisting inexperienced trainees in obtaining and interpreting standard basic obstetric scanning views, the use of artificial intelligence‐assisted systems has the potential to improve training effectiveness. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的荷花完成签到 ,获得积分10
6秒前
FEOROCHA给FEOROCHA的求助进行了留言
17秒前
21秒前
雪花完成签到 ,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
仁爱的戒指完成签到 ,获得积分10
1分钟前
唐唐完成签到,获得积分10
1分钟前
Charles完成签到,获得积分10
1分钟前
2分钟前
LIJIngcan完成签到 ,获得积分10
2分钟前
Jasper应助去去去去采纳,获得30
3分钟前
三十四画生完成签到 ,获得积分10
3分钟前
3分钟前
小化发布了新的文献求助10
3分钟前
郑洲完成签到 ,获得积分10
3分钟前
hzauhzau完成签到 ,获得积分10
4分钟前
体贴问丝完成签到 ,获得积分10
4分钟前
住在魔仙堡的鱼完成签到 ,获得积分10
4分钟前
寒战完成签到 ,获得积分10
4分钟前
4分钟前
bookgg完成签到 ,获得积分10
4分钟前
去去去去发布了新的文献求助30
4分钟前
wujuan1606完成签到 ,获得积分10
5分钟前
小猴子完成签到 ,获得积分10
5分钟前
zjq完成签到 ,获得积分10
5分钟前
研友_ZbP41L完成签到 ,获得积分10
5分钟前
Antonio完成签到 ,获得积分10
6分钟前
WXM完成签到 ,获得积分10
6分钟前
研友_Lw7OvL完成签到 ,获得积分10
6分钟前
光亮白羊完成签到 ,获得积分10
6分钟前
充电宝应助Prime采纳,获得10
6分钟前
6分钟前
yhr完成签到 ,获得积分10
6分钟前
Prime发布了新的文献求助10
6分钟前
健壮的怜烟完成签到,获得积分10
6分钟前
KY Mr.WANG完成签到,获得积分10
7分钟前
yuntong完成签到 ,获得积分10
7分钟前
胡强发布了新的文献求助10
7分钟前
fogsea完成签到,获得积分0
7分钟前
胡强完成签到,获得积分10
7分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179999
求助须知:如何正确求助?哪些是违规求助? 2830380
关于积分的说明 7976534
捐赠科研通 2491938
什么是DOI,文献DOI怎么找? 1329096
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954