亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports

医学 放射科 语言学 哲学
作者
Lu Zhang,Mingqian Liu,Lingyun Wang,Y Zhang,Xiangjun Xu,Zhijun Pan,Yan Feng,Jue Zhao,Lin Zhang,Gehong Yao,Xu Chen,Xueqian Xie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:20
标识
DOI:10.1148/radiol.240885
摘要

Background The specialization and complexity of radiology makes the automatic generation of radiologic impressions (ie, a diagnosis with differential diagnosis and management recommendations) challenging. Purpose To develop a large language model (LLM) that generates impressions based on imaging findings and to evaluate its performance in professional and linguistic dimensions. Materials and Methods Six radiologists recorded imaging examination findings from August 2 to 31, 2023, at Shanghai General Hospital and used the developed LLM before routinely writing report impressions for multiple radiologic modalities (CT, MRI, radiography, mammography) and anatomic sites (cranium and face, neck, chest, upper abdomen, lower abdomen, vessels, bone and joint, spine, breast), making necessary corrections and completing the radiologic impression. A subset was defined to investigate cases where the LLM-generated impressions differed from the final radiologist impressions by excluding identical and highly similar cases. An expert panel scored the LLM-generated impressions on a five-point Likert scale (5 = strongly agree) based on scientific terminology, coherence, specific diagnosis, differential diagnosis, management recommendations, correctness, comprehensiveness, harmlessness, and lack of bias. Results In this retrospective study, an LLM was pretrained using 20 GB of medical and general-purpose text data. The fine-tuning data set comprised 1.5 GB of data, including 800 radiology reports with paired instructions (describing the output task in natural language) and outputs. Test set 2 included data from 3988 patients (median age, 56 years [IQR, 40-68 years]; 2159 male). The median recall, precision, and F1 score of LLM-generated impressions were 0.775 (IQR, 0.56-1), 0.84 (IQR, 0.611-1), and 0.772 (IQR, 0.578-0.957), respectively, using the final impressions as the reference standard. In a subset of 1014 patients (median age, 57 years [IQR, 42-69 years]; 528 male), the overall median expert panel score for LLM-generated impressions was 5 (IQR, 5-5), ranging from 4 (IQR, 3-5) to 5 (IQR, 5-5). Conclusion The developed LLM generated radiologic impressions that were professionally and linguistically appropriate for a full spectrum of radiology examinations. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠奥特曼完成签到,获得积分10
5秒前
酷波er应助Wenqi采纳,获得10
33秒前
ww应助自信的雁芙采纳,获得10
39秒前
爱听歌西装完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
寄偶发布了新的文献求助10
1分钟前
正在努力的学术小垃圾完成签到 ,获得积分10
1分钟前
小柯基学从零学起完成签到 ,获得积分10
1分钟前
1分钟前
ddd发布了新的文献求助10
1分钟前
2分钟前
2分钟前
英俊的铭应助加湿器采纳,获得10
2分钟前
伊笙完成签到 ,获得积分0
2分钟前
馆长举报阿浩科研顺利求助涉嫌违规
2分钟前
彩虹儿应助科研通管家采纳,获得10
2分钟前
3分钟前
加湿器发布了新的文献求助10
3分钟前
3分钟前
哆啦的空间站给英勇鞋垫的求助进行了留言
3分钟前
闪闪蜜粉完成签到 ,获得积分10
3分钟前
Vaseegara完成签到 ,获得积分10
3分钟前
3分钟前
所所应助hzr采纳,获得10
3分钟前
4分钟前
卫归尘发布了新的文献求助10
4分钟前
4分钟前
hzr发布了新的文献求助10
4分钟前
卫归尘完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
miki完成签到,获得积分10
5分钟前
馆长举报lbl234求助涉嫌违规
5分钟前
迷路的幼南完成签到,获得积分10
5分钟前
daguan完成签到,获得积分10
5分钟前
Jasper应助hzr采纳,获得10
5分钟前
金超智完成签到,获得积分10
5分钟前
哆啦的空间站给鬼箭羽的求助进行了留言
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983563
求助须知:如何正确求助?哪些是违规求助? 4234837
关于积分的说明 13189450
捐赠科研通 4027118
什么是DOI,文献DOI怎么找? 2203036
邀请新用户注册赠送积分活动 1215294
关于科研通互助平台的介绍 1132377