亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports

医学 放射科 语言学 哲学
作者
Lu Zhang,Mingqian Liu,Lingyun Wang,Y Zhang,Xiangjun Xu,Zhijun Pan,Yan Feng,Jue Zhao,Lin Zhang,Gehong Yao,Xu Chen,Xueqian Xie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:14
标识
DOI:10.1148/radiol.240885
摘要

Background The specialization and complexity of radiology makes the automatic generation of radiologic impressions (ie, a diagnosis with differential diagnosis and management recommendations) challenging. Purpose To develop a large language model (LLM) that generates impressions based on imaging findings and to evaluate its performance in professional and linguistic dimensions. Materials and Methods Six radiologists recorded imaging examination findings from August 2 to 31, 2023, at Shanghai General Hospital and used the developed LLM before routinely writing report impressions for multiple radiologic modalities (CT, MRI, radiography, mammography) and anatomic sites (cranium and face, neck, chest, upper abdomen, lower abdomen, vessels, bone and joint, spine, breast), making necessary corrections and completing the radiologic impression. A subset was defined to investigate cases where the LLM-generated impressions differed from the final radiologist impressions by excluding identical and highly similar cases. An expert panel scored the LLM-generated impressions on a five-point Likert scale (5 = strongly agree) based on scientific terminology, coherence, specific diagnosis, differential diagnosis, management recommendations, correctness, comprehensiveness, harmlessness, and lack of bias. Results In this retrospective study, an LLM was pretrained using 20 GB of medical and general-purpose text data. The fine-tuning data set comprised 1.5 GB of data, including 800 radiology reports with paired instructions (describing the output task in natural language) and outputs. Test set 2 included data from 3988 patients (median age, 56 years [IQR, 40-68 years]; 2159 male). The median recall, precision, and F1 score of LLM-generated impressions were 0.775 (IQR, 0.56-1), 0.84 (IQR, 0.611-1), and 0.772 (IQR, 0.578-0.957), respectively, using the final impressions as the reference standard. In a subset of 1014 patients (median age, 57 years [IQR, 42-69 years]; 528 male), the overall median expert panel score for LLM-generated impressions was 5 (IQR, 5-5), ranging from 4 (IQR, 3-5) to 5 (IQR, 5-5). Conclusion The developed LLM generated radiologic impressions that were professionally and linguistically appropriate for a full spectrum of radiology examinations. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
35秒前
张泽崇发布了新的文献求助10
51秒前
姜忆霜完成签到 ,获得积分10
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得20
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
1分钟前
bing完成签到 ,获得积分10
1分钟前
shelly7788完成签到 ,获得积分10
1分钟前
草木完成签到 ,获得积分20
1分钟前
小雨完成签到,获得积分10
2分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
kyokyoro完成签到,获得积分10
4分钟前
mengliu完成签到,获得积分10
4分钟前
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
5分钟前
123发布了新的文献求助10
5分钟前
杨怂怂完成签到 ,获得积分10
5分钟前
执着南琴发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
脑洞疼应助科研通管家采纳,获得10
7分钟前
彭于晏应助科研通管家采纳,获得10
7分钟前
田様应助科研通管家采纳,获得10
7分钟前
8分钟前
929关闭了929文献求助
8分钟前
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214