Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports

医学 放射科 语言学 哲学
作者
Lu Zhang,Mingqian Liu,Lingyun Wang,Y Zhang,Xiangjun Xu,Zhijun Pan,Yan Feng,Jue Zhao,Lin Zhang,Gehong Yao,Xu Chen,Xueqian Xie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3)
标识
DOI:10.1148/radiol.240885
摘要

Background The specialization and complexity of radiology makes the automatic generation of radiologic impressions (ie, a diagnosis with differential diagnosis and management recommendations) challenging. Purpose To develop a large language model (LLM) that generates impressions based on imaging findings and to evaluate its performance in professional and linguistic dimensions. Materials and Methods Six radiologists recorded imaging examination findings from August 2 to 31, 2023, at Shanghai General Hospital and used the developed LLM before routinely writing report impressions for multiple radiologic modalities (CT, MRI, radiography, mammography) and anatomic sites (cranium and face, neck, chest, upper abdomen, lower abdomen, vessels, bone and joint, spine, breast), making necessary corrections and completing the radiologic impression. A subset was defined to investigate cases where the LLM-generated impressions differed from the final radiologist impressions by excluding identical and highly similar cases. An expert panel scored the LLM-generated impressions on a five-point Likert scale (5 = strongly agree) based on scientific terminology, coherence, specific diagnosis, differential diagnosis, management recommendations, correctness, comprehensiveness, harmlessness, and lack of bias. Results In this retrospective study, an LLM was pretrained using 20 GB of medical and general-purpose text data. The fine-tuning data set comprised 1.5 GB of data, including 800 radiology reports with paired instructions (describing the output task in natural language) and outputs. Test set 2 included data from 3988 patients (median age, 56 years [IQR, 40-68 years]; 2159 male). The median recall, precision, and F1 score of LLM-generated impressions were 0.775 (IQR, 0.56-1), 0.84 (IQR, 0.611-1), and 0.772 (IQR, 0.578-0.957), respectively, using the final impressions as the reference standard. In a subset of 1014 patients (median age, 57 years [IQR, 42-69 years]; 528 male), the overall median expert panel score for LLM-generated impressions was 5 (IQR, 5-5), ranging from 4 (IQR, 3-5) to 5 (IQR, 5-5). Conclusion The developed LLM generated radiologic impressions that were professionally and linguistically appropriate for a full spectrum of radiology examinations. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助潼潼采纳,获得30
2秒前
斯文败类应助对流域采纳,获得10
2秒前
科目三应助跳跃野狼采纳,获得10
2秒前
科研混子发布了新的文献求助10
3秒前
pluto应助研友_gnvY5L采纳,获得10
7秒前
大模型应助科研混子采纳,获得10
7秒前
9秒前
11秒前
talpionchen发布了新的文献求助10
11秒前
研友_nVNVVn发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
对流域发布了新的文献求助10
16秒前
坚定的雪枫给ider的求助进行了留言
16秒前
乐乐应助英勇的电话采纳,获得10
17秒前
yerenjie完成签到,获得积分20
18秒前
18秒前
贪玩的成危完成签到 ,获得积分10
18秒前
琉璃苣发布了新的文献求助10
19秒前
迅速怜寒完成签到,获得积分20
19秒前
朴素的无招完成签到 ,获得积分10
21秒前
小武wwwww发布了新的文献求助10
21秒前
研友_nVNVVn完成签到,获得积分10
21秒前
zxt完成签到,获得积分10
21秒前
22秒前
景辣条应助wumin采纳,获得10
23秒前
YJY发布了新的文献求助30
23秒前
halo发布了新的文献求助10
25秒前
深情安青应助heheda采纳,获得10
25秒前
laoliu完成签到,获得积分10
26秒前
丁丁猫老大完成签到 ,获得积分20
26秒前
orixero应助英俊的馒头采纳,获得10
27秒前
666发布了新的文献求助10
27秒前
yerenjie发布了新的文献求助50
28秒前
YJY完成签到,获得积分10
31秒前
jwC发布了新的文献求助10
32秒前
32秒前
迅速谷冬发布了新的文献求助10
32秒前
陈陈完成签到 ,获得积分20
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954