Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports

医学 放射科 语言学 哲学
作者
Lu Zhang,Mingqian Liu,Lingyun Wang,Y Zhang,Xiangjun Xu,Zhijun Pan,Yan Feng,Jue Zhao,Lin Zhang,Gehong Yao,Xu Chen,Xueqian Xie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:20
标识
DOI:10.1148/radiol.240885
摘要

Background The specialization and complexity of radiology makes the automatic generation of radiologic impressions (ie, a diagnosis with differential diagnosis and management recommendations) challenging. Purpose To develop a large language model (LLM) that generates impressions based on imaging findings and to evaluate its performance in professional and linguistic dimensions. Materials and Methods Six radiologists recorded imaging examination findings from August 2 to 31, 2023, at Shanghai General Hospital and used the developed LLM before routinely writing report impressions for multiple radiologic modalities (CT, MRI, radiography, mammography) and anatomic sites (cranium and face, neck, chest, upper abdomen, lower abdomen, vessels, bone and joint, spine, breast), making necessary corrections and completing the radiologic impression. A subset was defined to investigate cases where the LLM-generated impressions differed from the final radiologist impressions by excluding identical and highly similar cases. An expert panel scored the LLM-generated impressions on a five-point Likert scale (5 = strongly agree) based on scientific terminology, coherence, specific diagnosis, differential diagnosis, management recommendations, correctness, comprehensiveness, harmlessness, and lack of bias. Results In this retrospective study, an LLM was pretrained using 20 GB of medical and general-purpose text data. The fine-tuning data set comprised 1.5 GB of data, including 800 radiology reports with paired instructions (describing the output task in natural language) and outputs. Test set 2 included data from 3988 patients (median age, 56 years [IQR, 40-68 years]; 2159 male). The median recall, precision, and F1 score of LLM-generated impressions were 0.775 (IQR, 0.56-1), 0.84 (IQR, 0.611-1), and 0.772 (IQR, 0.578-0.957), respectively, using the final impressions as the reference standard. In a subset of 1014 patients (median age, 57 years [IQR, 42-69 years]; 528 male), the overall median expert panel score for LLM-generated impressions was 5 (IQR, 5-5), ranging from 4 (IQR, 3-5) to 5 (IQR, 5-5). Conclusion The developed LLM generated radiologic impressions that were professionally and linguistically appropriate for a full spectrum of radiology examinations. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助cmuwinni采纳,获得10
刚刚
LL发布了新的文献求助10
刚刚
陈竺完成签到 ,获得积分10
1秒前
1秒前
2秒前
kiko发布了新的文献求助10
3秒前
雨落瑾年完成签到,获得积分0
3秒前
3秒前
可爱的函函应助卞家友采纳,获得10
4秒前
4秒前
快乐棉花糖完成签到,获得积分20
4秒前
开朗嵩发布了新的文献求助10
4秒前
大力的南琴完成签到,获得积分10
4秒前
HGalong完成签到,获得积分0
6秒前
希望天下0贩的0应助xiaoju采纳,获得10
6秒前
7秒前
7秒前
黄HYK完成签到 ,获得积分10
7秒前
8秒前
tomorrow发布了新的文献求助10
8秒前
HOHO完成签到,获得积分10
8秒前
小马甲应助lllllan采纳,获得10
9秒前
羊羊完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
momo发布了新的文献求助10
9秒前
july发布了新的文献求助10
9秒前
11秒前
TY完成签到,获得积分10
11秒前
开朗嵩完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
王哒哒完成签到,获得积分10
11秒前
情怀应助赵一采纳,获得10
12秒前
隐形曼青应助看看采纳,获得10
13秒前
伶俐芝麻完成签到 ,获得积分10
14秒前
王璐发布了新的文献求助10
16秒前
Mei完成签到,获得积分10
21秒前
lllllan完成签到,获得积分20
21秒前
21秒前
22秒前
简单双双发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191