Research on Prediction of User Repurchase Behavior and Marketing Strategies in Internet Marketing

营销 业务 互联网 市场调研 数字营销 广告 计算机科学 万维网
作者
Yanling Liu,Yueji Wang,Lei Feng,Yuyao Wu,Xuechao Hao,Chanad Bhowbhandee
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2018
摘要

Abstract While users consume and shop on e-commerce platforms, they will generate a huge amount of data information, and tapping the potential value of these data can optimize online marketing and bring users a better consumption experience. This study aims to predict users’ repurchase behavior and formulate personalized marketing strategies by analyzing their repurchase behavior on e-commerce platforms. First, the improved RFM model and K-means++ algorithm are utilized for user value classification. Then, a model for predicting user repurchase behavior was constructed based on Logistic regression, XGBoost, and SVM, respectively, and the prediction effects were compared. Then, the prediction models UI and U-C are built based on the XGBoost algorithm from the perspective of user and product category, respectively, and fused using the Soft-Voting method. The prediction effect of the fused models is verified at the end. The F1 values for all three models in the test set are approximately 0.2, and the XGBoost model has a significantly superior prediction effect than the other two models. The precision, recall, and F1 values of the fused model are about 0.31, 0.26, and 0.28, respectively. These values have been improved by about 4%-19% compared to the pre-fusion. The fusion model’s ROC curve is located at the upper left corner and has an AUC of 0.82, indicating high accuracy and stable results. This study provides feasible suggestions for the development of online marketing strategies to promote user repurchase behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
by发布了新的文献求助10
1秒前
1秒前
啊汪~发布了新的文献求助10
1秒前
乐观长颈鹿完成签到 ,获得积分10
2秒前
4秒前
斯文败类应助企鹅不耐热采纳,获得10
4秒前
MYW完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
社恐小美完成签到 ,获得积分10
6秒前
llllhh完成签到,获得积分10
6秒前
Hanson完成签到,获得积分10
7秒前
SciGPT应助会举重的树采纳,获得10
7秒前
大海发布了新的文献求助10
8秒前
8秒前
小叶子发布了新的文献求助30
8秒前
小二郎应助经过采纳,获得10
8秒前
落尘完成签到,获得积分10
8秒前
搜集达人应助qq采纳,获得10
9秒前
9秒前
Ahan完成签到,获得积分20
10秒前
杨馨蕊发布了新的文献求助10
11秒前
zyyy发布了新的文献求助10
11秒前
WangXuerong发布了新的文献求助10
11秒前
情怀应助WHITE1采纳,获得10
12秒前
无奈傲菡发布了新的文献求助10
12秒前
12秒前
13秒前
大个应助中午吃什么采纳,获得10
13秒前
浮游应助愉快树叶采纳,获得30
13秒前
XT完成签到,获得积分10
13秒前
14秒前
邱志鸿完成签到,获得积分10
14秒前
雨0926应助KKKKKKKKKKKK采纳,获得200
15秒前
wanci应助穆仰采纳,获得10
15秒前
阴天小怪兽完成签到,获得积分10
16秒前
16秒前
16秒前
zj发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004587
求助须知:如何正确求助?哪些是违规求助? 4248596
关于积分的说明 13237599
捐赠科研通 4048105
什么是DOI,文献DOI怎么找? 2214676
邀请新用户注册赠送积分活动 1224572
关于科研通互助平台的介绍 1145052