Research on Prediction of User Repurchase Behavior and Marketing Strategies in Internet Marketing

营销 业务 互联网 市场调研 数字营销 广告 计算机科学 万维网
作者
Yanling Liu,Yueji Wang,Lei Feng,Yuyao Wu,Xuechao Hao,Chanad Bhowbhandee
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2018
摘要

Abstract While users consume and shop on e-commerce platforms, they will generate a huge amount of data information, and tapping the potential value of these data can optimize online marketing and bring users a better consumption experience. This study aims to predict users’ repurchase behavior and formulate personalized marketing strategies by analyzing their repurchase behavior on e-commerce platforms. First, the improved RFM model and K-means++ algorithm are utilized for user value classification. Then, a model for predicting user repurchase behavior was constructed based on Logistic regression, XGBoost, and SVM, respectively, and the prediction effects were compared. Then, the prediction models UI and U-C are built based on the XGBoost algorithm from the perspective of user and product category, respectively, and fused using the Soft-Voting method. The prediction effect of the fused models is verified at the end. The F1 values for all three models in the test set are approximately 0.2, and the XGBoost model has a significantly superior prediction effect than the other two models. The precision, recall, and F1 values of the fused model are about 0.31, 0.26, and 0.28, respectively. These values have been improved by about 4%-19% compared to the pre-fusion. The fusion model’s ROC curve is located at the upper left corner and has an AUC of 0.82, indicating high accuracy and stable results. This study provides feasible suggestions for the development of online marketing strategies to promote user repurchase behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏瑞发布了新的文献求助10
1秒前
1秒前
milk完成签到,获得积分10
1秒前
高大绝义发布了新的文献求助10
2秒前
haha完成签到,获得积分10
2秒前
呵呵功夫不负完成签到,获得积分20
2秒前
2秒前
tdtk发布了新的文献求助10
5秒前
木木彡发布了新的文献求助10
5秒前
6秒前
7秒前
A毛巾哦发布了新的文献求助10
9秒前
9秒前
不要碧莲发布了新的文献求助10
10秒前
11秒前
11秒前
Jasper应助简单的宛海采纳,获得10
11秒前
koko完成签到,获得积分10
11秒前
Amy完成签到,获得积分10
12秒前
xixi完成签到 ,获得积分20
12秒前
15秒前
苹果树下的懒洋洋完成签到 ,获得积分10
16秒前
柯一一应助一块云采纳,获得10
16秒前
絮甯完成签到 ,获得积分10
16秒前
17秒前
邰墨以完成签到 ,获得积分10
17秒前
木子水告完成签到,获得积分10
18秒前
HJJ发布了新的文献求助10
18秒前
ding应助sensen采纳,获得10
18秒前
19秒前
DreamRunner0410完成签到 ,获得积分10
19秒前
科研民工_郭完成签到,获得积分10
19秒前
简单的宛海完成签到,获得积分10
21秒前
21秒前
22秒前
北城发布了新的文献求助10
22秒前
沈嘀嘀发布了新的文献求助10
22秒前
雪碧给雪碧的求助进行了留言
22秒前
楼台杏花琴弦完成签到,获得积分10
23秒前
善学以致用应助hzhang0807采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953047
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091889
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801415