Improved Fault Detection and Classification in PV Arrays using Stockwell Transform and Data Mining Techniques

断层(地质) 故障检测与隔离 数据挖掘 光伏系统 计算机科学 可靠性工程 模式识别(心理学) 人工智能 工程类 地震学 电气工程 执行机构 地质学
作者
Chidurala Saiprakash,S Ramana Kumar Joga,Alivarani Mohapatra,Byamakesh Nayak
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102808-102808
标识
DOI:10.1016/j.rineng.2024.102808
摘要

The growing integration of photovoltaic (PV) systems into the power grid necessitates reliable fault detection and classification mechanisms to ensure operational efficiency and safety. Fault detection in photovoltaic (PV) arrays is crucial for maintaining optimal system performance and ensuring the reliability of solar power generation. This paper proposes a novel approach for fault detection in PV arrays by employing the Stockwell transform in combination with various data mining techniques. The Stockwell transform is an advanced time-frequency analysis tool that allows for enhanced feature extraction from time-series data. By applying the Stockwell transform to the PV array's operational data, valuable frequency-domain information is extracted, enabling the identification of subtle fault signatures. To effectively detect and classify various faults, different data mining techniques, such as support vector machines, decision trees, random forests, and k-nearest neighbours, are applied to the transformed data. Each technique's effectiveness in identifying faults is evaluated and compared, enabling the selection of the most suitable algorithm for the specific application. Experimental results demonstrate the effectiveness of the proposed fault detection approach, exhibiting high accuracy, sensitivity, and specificity in identifying various types of faults in PV arrays. Extensive simulations and experimental validations were conducted on various fault conditions, including partial shading, open-circuit faults, and degradation. The results demonstrate the proposed method's superior performance, achieving an accuracy of 99.61%, precision of 99.75% and F1 score of 98.73%. These metrics significantly surpass traditional fault detection techniques, highlighting the method's potential for real-world deployment. The approach not only enhances the reliability of PV systems but also contributes to reducing maintenance costs and improving system efficiency. The combination of the Stockwell transforms with data mining techniques proposed here provides a robust and efficient framework for early detection of faults, enabling timely maintenance and minimizing energy losses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sn完成签到,获得积分10
刚刚
快来和姐妹玩完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
我是老大应助在远方采纳,获得10
5秒前
daihahaha完成签到,获得积分10
5秒前
熊天天完成签到,获得积分10
6秒前
Zmy发布了新的文献求助10
8秒前
英姑应助ShengQ采纳,获得10
9秒前
天明发布了新的文献求助10
10秒前
顾矜应助坦率依玉采纳,获得10
11秒前
万有引力完成签到,获得积分10
13秒前
朴素若枫完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
科研通AI2S应助zn采纳,获得10
15秒前
Axel完成签到,获得积分10
15秒前
天明完成签到,获得积分10
17秒前
Liu发布了新的文献求助10
18秒前
沐阳完成签到,获得积分10
19秒前
今麦郎发布了新的文献求助10
19秒前
20秒前
丘比特应助在远方采纳,获得10
20秒前
pluto应助专注的紫文采纳,获得10
21秒前
24秒前
25秒前
韩靖仇发布了新的文献求助10
26秒前
zho发布了新的文献求助10
26秒前
like发布了新的文献求助10
27秒前
28秒前
林安完成签到,获得积分10
28秒前
坦率依玉发布了新的文献求助10
29秒前
qyq完成签到,获得积分10
29秒前
29秒前
30秒前
30秒前
30秒前
31秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129723
求助须知:如何正确求助?哪些是违规求助? 2780500
关于积分的说明 7748555
捐赠科研通 2435832
什么是DOI,文献DOI怎么找? 1294313
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570