已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic pricing with multiple consumers and alternating offers under retailer competition: theory and experiment

竞赛(生物学) 微观经济学 经济 动态定价 博弈论 广告 产业组织 业务 生态学 生物
作者
Amnon Rapoport,Eyran J. Gisches,Vincent Mak,Rami Zwick
出处
期刊:Experimental Economics [Springer Nature]
标识
DOI:10.1007/s10683-024-09848-8
摘要

Abstract We introduce and test a stylized model of dynamic pricing under duopolistic competition. In our model, a consumer receives alternating price offers between two retailers over an indefinite number of periods so that the game or “season” terminates with a fixed probability after each period. The two retailers do not know the valuation of the consumer for the good they are competing to sell to the consumer, but they have common knowledge about the probability distribution of the valuation. Our equilibrium analysis suggests that price offers decrease exponentially across periods over the season. Moreover, when there are multiple consumers in the game, as long as their valuations are ex ante independently and identically distributed, the equilibrium predictions are the same regardless of the number of consumers. An experiment on the model showed that subjects acting as retailers often overpriced relative to equilibrium predictions. In addition, the theoretical invariance with respect to the number of consumers did not hold: consumers seemed to be more prone to strategic waiting in the first period of the season when there were multiple consumers (compared with when there was only a single consumer), leading to a decrease in the per-consumer payoff of the retailer who made the price offer in the first period and a corresponding increase in per-consumer payoff of the other retailer. There is also evidence of within-session evolution that led to lower retailer prices that were closer to equilibrium predictions, and higher tendency for consumer strategic waiting, as the session progressed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
梦回唐朝完成签到 ,获得积分10
3秒前
CR7完成签到,获得积分10
4秒前
woshizhengde关注了科研通微信公众号
7秒前
14秒前
15秒前
16秒前
TKTATO发布了新的文献求助10
20秒前
22秒前
25秒前
興崋完成签到 ,获得积分10
26秒前
28秒前
Dali完成签到 ,获得积分10
28秒前
28秒前
30秒前
woshizhengde发布了新的文献求助10
31秒前
菲1208完成签到,获得积分10
33秒前
35秒前
朱文韬发布了新的文献求助10
36秒前
赘婿应助PrayOne采纳,获得10
38秒前
King丶惠忍完成签到,获得积分10
38秒前
39秒前
握月担风完成签到,获得积分10
39秒前
Leif完成签到 ,获得积分0
40秒前
wei发布了新的文献求助10
41秒前
科研通AI2S应助陪你长大采纳,获得10
41秒前
希望天下0贩的0应助Kashing采纳,获得30
42秒前
44秒前
51秒前
52秒前
Alicia完成签到 ,获得积分10
52秒前
张张完成签到,获得积分20
53秒前
56秒前
景__完成签到 ,获得积分10
58秒前
张张发布了新的文献求助10
59秒前
wei完成签到,获得积分10
59秒前
1分钟前
lulululululu发布了新的文献求助10
1分钟前
乐乐应助张张采纳,获得10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387