Cold SegDiffusion: A novel diffusion model for medical image segmentation

尺度空间分割 基于分割的对象分类 图像分割 光学(聚焦) 编码器 人工智能 计算机视觉 计算机科学 分割 模式识别(心理学) 物理 操作系统 光学
作者
Pengfei Yan,Minglei Li,Jiusi Zhang,Guanyi Li,Yuchen Jiang,Hao Luo
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112350-112350 被引量:19
标识
DOI:10.1016/j.knosys.2024.112350
摘要

Medical image segmentation is crucial in accurately identifying and delineating regions of interest in medical images, which can inform the diagnosis and treatment of various diseases. Therefore, developing high-performance computer-aided diagnosis systems for medical image segmentation has become a prominent focus within computer vision. With the development of deep learning, diffusion models have exhibited remarkable performance in medical image segmentation tasks. However, traditional segmentation diffusion models typically employ random Gaussian noise to generate segmentation masks, resulting in non-unique segmentation masks that fail to guarantee the reproducibility of segmentation results. To tackle this issue, this paper introduces a novel method, Cold SegDiffusion, for general medical image segmentation based on the diffusion model. In this method, medical image segmentation is conceptualized as a denoising problem. The segmentation masks covering medical images serve as input for the segmentation encoder, addressing the challenge of generating non-unique masks due to noise randomness. Additionally, the contrast enhancement module is designed to translate features into the frequency domain, addressing the issues of low contrast and boundary disappearance in medical images. Furthermore, the suggested conditional cross-attention module utilizes the conditional encoder and cross-attention weights to enhance important features of the segmentation encoder output, improving the network's capacity to focus on target regions. The proposed method is validated across three medical image segmentation datasets with different modalities. Experimental results demonstrate that Cold SegDiffusion outperforms mainstream segmentation methods. The code is available at https://github.com/TimesXY/Cold-SegDiffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助chchjust采纳,获得30
1秒前
孤独的太清完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
yukicc完成签到,获得积分10
3秒前
3秒前
hh完成签到,获得积分10
6秒前
时倾完成签到,获得积分10
6秒前
清脆冬日完成签到 ,获得积分10
6秒前
7秒前
善学以致用应助Mipaa采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
积极松完成签到 ,获得积分10
10秒前
一又二分之一完成签到,获得积分10
11秒前
xieyangyu完成签到 ,获得积分10
11秒前
ARESCI发布了新的文献求助10
12秒前
lyp发布了新的文献求助10
13秒前
淡淡尔烟发布了新的文献求助10
15秒前
Gloyxtg发布了新的文献求助10
15秒前
思源应助王月帆采纳,获得10
16秒前
99668完成签到,获得积分10
17秒前
小马甲应助周美言采纳,获得10
17秒前
可爱的函函应助以鹿之路采纳,获得10
17秒前
Roxanne发布了新的文献求助20
17秒前
17秒前
Jasper应助星星采纳,获得10
18秒前
18秒前
kikeva发布了新的文献求助10
21秒前
情怀应助彩彩采纳,获得10
22秒前
大模型应助Heyley采纳,获得10
22秒前
科研通AI6应助hh采纳,获得10
22秒前
研友_VZG7GZ应助叶涛采纳,获得10
23秒前
海棠发布了新的文献求助10
24秒前
云上完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950