Cold SegDiffusion: A novel diffusion model for medical image segmentation

尺度空间分割 基于分割的对象分类 图像分割 光学(聚焦) 编码器 人工智能 计算机视觉 计算机科学 分割 模式识别(心理学) 物理 光学 操作系统
作者
Pengfei Yan,Minglei Li,Jiusi Zhang,Guanyi Li,Yuchen Jiang,Hao Luo
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112350-112350
标识
DOI:10.1016/j.knosys.2024.112350
摘要

Medical image segmentation is crucial in accurately identifying and delineating regions of interest in medical images, which can inform the diagnosis and treatment of various diseases. Therefore, developing high-performance computer-aided diagnosis systems for medical image segmentation has become a prominent focus within computer vision. With the development of deep learning, diffusion models have exhibited remarkable performance in medical image segmentation tasks. However, traditional segmentation diffusion models typically employ random Gaussian noise to generate segmentation masks, resulting in non-unique segmentation masks that fail to guarantee the reproducibility of segmentation results. To tackle this issue, this paper introduces a novel method, Cold SegDiffusion, for general medical image segmentation based on the diffusion model. In this method, medical image segmentation is conceptualized as a denoising problem. The segmentation masks covering medical images serve as input for the segmentation encoder, addressing the challenge of generating non-unique masks due to noise randomness. Additionally, the contrast enhancement module is designed to translate features into the frequency domain, addressing the issues of low contrast and boundary disappearance in medical images. Furthermore, the suggested conditional cross-attention module utilizes the conditional encoder and cross-attention weights to enhance important features of the segmentation encoder output, improving the network's capacity to focus on target regions. The proposed method is validated across three medical image segmentation datasets with different modalities. Experimental results demonstrate that Cold SegDiffusion outperforms mainstream segmentation methods. The code is available at https://github.com/TimesXY/Cold-SegDiffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖发布了新的文献求助10
刚刚
刚刚
跳跃尔容完成签到,获得积分10
1秒前
wyblobin完成签到,获得积分10
1秒前
1秒前
2秒前
沉默沛岚完成签到,获得积分10
2秒前
丰知然应助宇文宛菡采纳,获得10
2秒前
所所应助tu采纳,获得30
3秒前
mechefy完成签到,获得积分10
3秒前
鲤鱼萧完成签到,获得积分10
4秒前
宗笑晴完成签到,获得积分10
4秒前
5秒前
小蘑菇应助头发乱了采纳,获得10
5秒前
代萌萌发布了新的文献求助10
6秒前
jucy发布了新的文献求助50
6秒前
6秒前
Lz完成签到,获得积分10
6秒前
Hello应助葛辉辉采纳,获得10
6秒前
秦嘉旎完成签到,获得积分10
7秒前
华仔应助通~采纳,获得10
7秒前
万能图书馆应助半颗橙子采纳,获得10
7秒前
樱铃完成签到,获得积分10
8秒前
8秒前
上官若男应助俭朴的明轩采纳,获得10
8秒前
1199发布了新的文献求助10
9秒前
英姑应助包容的过客采纳,获得10
10秒前
标致的战斗机完成签到,获得积分10
10秒前
科研人发布了新的文献求助10
11秒前
hl完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助dingdong采纳,获得10
12秒前
Jasper应助幸福胡萝卜采纳,获得10
12秒前
爱看文献的小羽毛完成签到,获得积分10
12秒前
13秒前
song99发布了新的文献求助10
13秒前
13秒前
juan完成签到 ,获得积分10
13秒前
徐安琪完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762