Cold SegDiffusion: A novel diffusion model for medical image segmentation

尺度空间分割 基于分割的对象分类 图像分割 光学(聚焦) 编码器 人工智能 计算机视觉 计算机科学 分割 模式识别(心理学) 物理 操作系统 光学
作者
Pengfei Yan,Minglei Li,Jiusi Zhang,Guanyi Li,Yuchen Jiang,Hao Luo
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112350-112350 被引量:15
标识
DOI:10.1016/j.knosys.2024.112350
摘要

Medical image segmentation is crucial in accurately identifying and delineating regions of interest in medical images, which can inform the diagnosis and treatment of various diseases. Therefore, developing high-performance computer-aided diagnosis systems for medical image segmentation has become a prominent focus within computer vision. With the development of deep learning, diffusion models have exhibited remarkable performance in medical image segmentation tasks. However, traditional segmentation diffusion models typically employ random Gaussian noise to generate segmentation masks, resulting in non-unique segmentation masks that fail to guarantee the reproducibility of segmentation results. To tackle this issue, this paper introduces a novel method, Cold SegDiffusion, for general medical image segmentation based on the diffusion model. In this method, medical image segmentation is conceptualized as a denoising problem. The segmentation masks covering medical images serve as input for the segmentation encoder, addressing the challenge of generating non-unique masks due to noise randomness. Additionally, the contrast enhancement module is designed to translate features into the frequency domain, addressing the issues of low contrast and boundary disappearance in medical images. Furthermore, the suggested conditional cross-attention module utilizes the conditional encoder and cross-attention weights to enhance important features of the segmentation encoder output, improving the network's capacity to focus on target regions. The proposed method is validated across three medical image segmentation datasets with different modalities. Experimental results demonstrate that Cold SegDiffusion outperforms mainstream segmentation methods. The code is available at https://github.com/TimesXY/Cold-SegDiffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助lorentzh采纳,获得10
刚刚
乐乐应助杨辅政采纳,获得10
1秒前
233发布了新的文献求助10
2秒前
2秒前
潇涯发布了新的文献求助30
3秒前
CNAxiaozhu7应助linlin采纳,获得10
3秒前
4秒前
4秒前
5秒前
达雨应助SiqiZhang采纳,获得10
5秒前
7秒前
OneHundred发布了新的文献求助10
7秒前
嘉嘉sone发布了新的文献求助10
8秒前
深情安青应助小鲨鱼采纳,获得10
8秒前
文艺紫菜发布了新的文献求助10
9秒前
大个应助重要的汽车采纳,获得30
9秒前
深情安青应助唐白云采纳,获得10
9秒前
科研通AI6应助慈祥的鑫采纳,获得10
9秒前
zej完成签到,获得积分10
11秒前
11秒前
潇涯完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
Anna完成签到,获得积分10
15秒前
15秒前
小新给小新的求助进行了留言
15秒前
Wawoo发布了新的文献求助10
15秒前
16秒前
斯文败类应助勤奋的绝义采纳,获得10
16秒前
lorentzh发布了新的文献求助10
17秒前
茜茜公主发布了新的文献求助10
18秒前
杨辅政完成签到,获得积分20
18秒前
小二郎应助坚强南烟采纳,获得10
19秒前
852应助奋斗的孤兰采纳,获得10
19秒前
19秒前
sevenhill应助认真的蜜粉采纳,获得20
21秒前
lcy发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557221
求助须知:如何正确求助?哪些是违规求助? 4642435
关于积分的说明 14667964
捐赠科研通 4583782
什么是DOI,文献DOI怎么找? 2514417
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459402