Cold SegDiffusion: A novel diffusion model for medical image segmentation

尺度空间分割 基于分割的对象分类 图像分割 光学(聚焦) 编码器 人工智能 计算机视觉 计算机科学 分割 模式识别(心理学) 物理 光学 操作系统
作者
Pengfei Yan,Minglei Li,Jiusi Zhang,Guanyi Li,Yuchen Jiang,Hao Luo
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112350-112350
标识
DOI:10.1016/j.knosys.2024.112350
摘要

Medical image segmentation is crucial in accurately identifying and delineating regions of interest in medical images, which can inform the diagnosis and treatment of various diseases. Therefore, developing high-performance computer-aided diagnosis systems for medical image segmentation has become a prominent focus within computer vision. With the development of deep learning, diffusion models have exhibited remarkable performance in medical image segmentation tasks. However, traditional segmentation diffusion models typically employ random Gaussian noise to generate segmentation masks, resulting in non-unique segmentation masks that fail to guarantee the reproducibility of segmentation results. To tackle this issue, this paper introduces a novel method, Cold SegDiffusion, for general medical image segmentation based on the diffusion model. In this method, medical image segmentation is conceptualized as a denoising problem. The segmentation masks covering medical images serve as input for the segmentation encoder, addressing the challenge of generating non-unique masks due to noise randomness. Additionally, the contrast enhancement module is designed to translate features into the frequency domain, addressing the issues of low contrast and boundary disappearance in medical images. Furthermore, the suggested conditional cross-attention module utilizes the conditional encoder and cross-attention weights to enhance important features of the segmentation encoder output, improving the network's capacity to focus on target regions. The proposed method is validated across three medical image segmentation datasets with different modalities. Experimental results demonstrate that Cold SegDiffusion outperforms mainstream segmentation methods. The code is available at https://github.com/TimesXY/Cold-SegDiffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Rebecca发布了新的文献求助10
2秒前
2秒前
烟花应助科研r采纳,获得10
2秒前
qqqqgc完成签到,获得积分20
2秒前
YYGQ完成签到,获得积分10
3秒前
王九八发布了新的文献求助10
4秒前
OngJi完成签到,获得积分10
4秒前
4秒前
5秒前
咖喱鸡完成签到,获得积分10
5秒前
李鑫彤发布了新的文献求助10
5秒前
Jasper应助qqqqgc采纳,获得10
5秒前
科研通AI2S应助童紫槐采纳,获得10
5秒前
Rebecca完成签到,获得积分10
6秒前
xxc发布了新的文献求助10
7秒前
子凯发布了新的文献求助10
7秒前
高高梦松发布了新的文献求助10
8秒前
你好麻烦哦完成签到,获得积分10
8秒前
顾矜应助等待的道消采纳,获得10
9秒前
9秒前
清清完成签到,获得积分10
10秒前
Hbobo发布了新的文献求助10
10秒前
共享精神应助无名花生采纳,获得10
10秒前
科研通AI2S应助求知欲采纳,获得10
10秒前
充电宝应助Xingliang_Wu98采纳,获得10
10秒前
11秒前
搜集达人应助123采纳,获得10
11秒前
12秒前
13秒前
13秒前
ziqiao完成签到,获得积分10
13秒前
顺利的雨灵完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663