Endosomal membrane budding patterns in plants

ESCRT公司 内体 萌芽 细胞生物学 生物 小泡 内膜 膜曲率 生物物理学 生物化学 线粒体 细胞内
作者
Ethan R. Weiner,Elizabeth Berryman,Felix J. Frey,Ariadna González‐Solís,André Leier,Tatiana T. Marquez‐Lago,Anđela Šarić,Marisa S. Otegui
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (44)
标识
DOI:10.1073/pnas.2409407121
摘要

Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In Arabidopsis , endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation. Through morphometric analyses of tomographic reconstructions of endosomes across yeast, algae, and various land plants, we have found that ILV concatenation is widespread within plant species, but only prevalent in seed plants, especially in flowering plants. Multiple budding sites that require the formation of pores in the limiting membrane were only identified in hornworts and seed plants, suggesting that this mechanism has evolved independently in both plant lineages. To identify the conditions under which these multiple budding sites can arise, we used particle-based molecular dynamics simulations and found that changes in ESCRT filament properties, such as filament curvature and membrane binding energy, can generate the membrane shapes observed in multiple budding sites. To understand the relationship between membrane budding activity and ILV network topology, we performed computational simulations and identified a set of membrane remodeling parameters that can recapitulate our tomographic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zier完成签到 ,获得积分10
1秒前
阡陌完成签到,获得积分10
1秒前
华仔应助毕业就好采纳,获得10
1秒前
liyi发布了新的文献求助10
1秒前
难过小天鹅完成签到,获得积分10
2秒前
非常可爱发布了新的文献求助20
2秒前
eee发布了新的文献求助10
2秒前
幸福胡萝卜完成签到,获得积分10
2秒前
3秒前
科研通AI5应助琅琊为刃采纳,获得10
3秒前
3秒前
3秒前
3秒前
寒冷的奇异果完成签到,获得积分10
4秒前
hziyu发布了新的文献求助10
5秒前
5秒前
野性的南蕾完成签到,获得积分10
5秒前
毛毛哦啊发布了新的文献求助10
5秒前
zzzzzk发布了新的文献求助10
5秒前
5秒前
lalala发布了新的文献求助10
6秒前
三里墩头应助oldlee采纳,获得20
6秒前
6秒前
iNk应助西安小小朱采纳,获得10
6秒前
CodeCraft应助西安小小朱采纳,获得10
6秒前
无花果应助爱学习的小迟采纳,获得10
7秒前
哭泣的映寒完成签到 ,获得积分10
7秒前
xls完成签到,获得积分10
7秒前
7秒前
故意的傲玉应助圈圈采纳,获得10
7秒前
8秒前
522完成签到,获得积分10
8秒前
8秒前
kbj发布了新的文献求助10
8秒前
9秒前
老西瓜发布了新的文献求助10
9秒前
人各有痣完成签到,获得积分10
9秒前
后知后觉发布了新的文献求助10
9秒前
xiaoxiao发布了新的文献求助30
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672