脱落酸
生长素
生物
转录因子
开枪
基因
矮化
基因表达
串扰
细胞生物学
植物
遗传学
光学
物理
作者
Bingxin Wang,Li Wang,Liqun Li,Danmei Pang,Yanhong Lei,Hao-Dong Qi,Birong Chen,Mengnan Guo,Qinghong Zeng,Yanzhou Xie,Xuejun Li
标识
DOI:10.1093/plphys/kiae569
摘要
Abstract Genetic strategies can be effective in improving wheat (Triticum aestivum L.) drought stress tolerance, but accumulating evidence suggests that overexpressing drought-resistance genes, especially genes related to the abscisic acid (ABA) signaling pathway, can retard plant growth. We previously characterized the positive roles of the wheat bZIP transcription factor TaFD-Like2-1A (TaFDL2-1A) in drought stress tolerance and ABA biosynthesis and response, whereas a dwarfing shoot exhibited under normal conditions. This study determined the underlying mechanisms that allow TaFDL2-1A to affect shoot growth. Overexpressing TaFDL2-1A decreased cell length, cell width, leaf size, shoot length, and biomass in wheat. The results of RNA-seq showed that multiple differently expressed transcripts are enriched in the auxin signaling pathway. Further analysis indicated higher expression levels of Gretchen Hagen3 (GH3) genes and lower indole-3-acetic acid (IAA) concentrations in the TaFDL2-1A overexpression lines. Exogenous IAA treatment restored the phenotypes of the TaFDL2-1A overexpression lines to wild-type levels. Transcriptional regulation analysis suggested that TaFDL2-1A enhances the expression of auxin metabolism genes, such as TaGH3.2-3A, TaGH3.2-3B, TaGH3.8-2A, and TaGH3.8-2D, by directly binding to ACGT core cis-elements. Furthermore, tafdl2 knock-out plants had lower expression levels of these GH3 genes and higher IAA levels than Fielder wheat. These GH3 gene expression and IAA levels were induced and reduced in Fielder wheat and tafdl2 knock-out plants treated with exogenous ABA. Our findings elucidate mechanisms underlying the functional redundancy of TaFDL2-1A in the crosstalk between ABA and IAA to affect shoot growth and provide insights into the balance between drought resistance and yield in wheat.
科研通智能强力驱动
Strongly Powered by AbleSci AI