Asynchronous Functional Brain Network Construction with Spatiotemporal Transformer for MCI Classification

异步通信 计算机科学 人工智能 变压器 模式识别(心理学) 计算机网络 工程类 电气工程 电压
作者
Jianjia Zhang,Xiaotong Wu,Xiang Tang,Luping Zhou,Lei Wang,Weiwen Wu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3486086
摘要

Construction and analysis of functional brain networks (FBNs) with resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method to diagnose functional brain diseases. Nevertheless, the existing methods suffer from several limitations. First, the functional connectivities (FCs) of the FBN are usually measured by the temporal co-activation level between rs-fMRI time series from regions of interest (ROIs). While enjoying simplicity, the existing approach implicitly assumes simultaneous co-activation of all the ROIs, and models only their synchronous dependencies. However, the FCs are not necessarily always synchronous due to the time lag of information flow and cross-time interactions between ROIs. Therefore, it is desirable to model asynchronous FCs. Second, the traditional methods usually construct FBNs at individual level, leading to large variability and degraded diagnosis accuracy when modeling asynchronous FBN. Third, the FBN construction and analysis are conducted in two independent steps without joint alignment for the target diagnosis task. To address the first limitation, this paper proposes an effective sliding-window-based method to model spatiotemporal FCs in Transformer. Regarding the second limitation, we propose to learn common and individual FBNs adaptively with the common FBN as prior knowledge, thus alleviating the variability and enabling the network to focus on the individual disease-specific asynchronous FCs. To address the third limitation, the common and individual asynchronous FBNs are built and analyzed by an integrated network, enabling end-to-end training and improving the flexibility and discriminativity. The effectiveness of the proposed method is consistently demonstrated on three data sets for mild cognitive impairment (MCI) diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花花呀发布了新的文献求助10
1秒前
今天也要开心Y完成签到,获得积分10
2秒前
Ash完成签到,获得积分10
2秒前
ZHANG完成签到,获得积分10
2秒前
小小的天空完成签到 ,获得积分10
3秒前
不晚完成签到,获得积分10
3秒前
媛媛完成签到 ,获得积分10
4秒前
kokoka完成签到 ,获得积分10
4秒前
胡楠发布了新的文献求助30
5秒前
5秒前
路人甲完成签到,获得积分10
5秒前
Amyur完成签到,获得积分10
5秒前
Jasper应助不晚采纳,获得10
5秒前
隐形曼青应助qrj采纳,获得10
6秒前
戈笙gg完成签到,获得积分10
6秒前
6秒前
7秒前
默默柚子完成签到,获得积分10
7秒前
胡图图完成签到,获得积分10
8秒前
酷波er应助ccciii采纳,获得10
8秒前
bo4完成签到,获得积分10
8秒前
ZLQ完成签到,获得积分10
8秒前
Supertyl发布了新的文献求助20
8秒前
开心成威完成签到 ,获得积分10
8秒前
宇宙中的先行者完成签到 ,获得积分10
9秒前
chiyu完成签到,获得积分10
9秒前
好汉完成签到,获得积分10
9秒前
左丘冥完成签到,获得积分10
9秒前
冰激凌完成签到,获得积分10
10秒前
liuhongcan完成签到,获得积分10
10秒前
10秒前
王路飞完成签到,获得积分10
10秒前
Dharma_Bums完成签到,获得积分10
10秒前
李sir完成签到,获得积分10
10秒前
kiki发布了新的文献求助10
11秒前
小九九完成签到,获得积分10
11秒前
卑微科研小白完成签到,获得积分10
11秒前
daling发布了新的文献求助10
11秒前
洽洽瓜子shine完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565