Physics simulation capabilities of LLMs

物理
作者
Mohamad Ali-Dib,Kristen Menou
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad7a27
摘要

Abstract Large Language Models (LLMs) can solve some undergraduate-level to graduate-level physics text-
book problems and are proficient at coding. Combining these two capabilities could one day enable
AI systems to simulate and predict the physical world.
We present an evaluation of state-of-the-art (SOTA) LLMs on PhD-level to research-level computational physics problems. We condition LLM generation on the use of well-documented and widely-used
packages to elicit coding capabilities in the physics and astrophysics domains. We contribute ∼ 50
original and challenging problems in celestial mechanics (with REBOUND), stellar physics (with MESA),
1D fluid dynamics (with Dedalus) and non-linear dynamics (with SciPy). Since our problems do not
admit unique solutions, we evaluate LLM performance on several soft metrics: counts of lines that contain different types of errors (coding, physics, necessity and sufficiency) as well as a more ‘educational’
Pass-Fail metric focused on capturing the salient physical ingredients of the problem at hand.
As expected, today’s SOTA LLM (GPT4) zero-shot fails most of our problems, although about 40%
of the solutions could plausibly get a passing grade. About 70−90% of the code lines produced are
necessary, sufficient and correct (coding & physics). Physics and coding errors are the most common,
with some unnecessary or insufficient lines. We observe significant variations across problem class and
difficulty. We identify several failure modes of GPT4 in the computational physics domain, such as
poor physical units handling, poor code versioning, tendency to hallucinate plausible sub-modules,
lack of physical justification for global run parameters (e.g., simulation time, or upper-lower bounds
for parametric exploration) and inability to define steady-state or stopping conditions reliably.
Our reconnaissance work provides a snapshot of current computational capabilities in classical physics
and points to obvious improvement targets if AI systems are ever to reach a basic level of autonomy
in physics simulation capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桑葚啊完成签到,获得积分10
1秒前
复杂的之卉完成签到,获得积分10
4秒前
4秒前
4秒前
plant发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
甜蜜寄文完成签到 ,获得积分10
9秒前
10秒前
10秒前
落寞奎发布了新的文献求助10
11秒前
你怎么那么美完成签到,获得积分10
11秒前
11秒前
13秒前
小马甲应助wzj采纳,获得10
13秒前
传奇3应助plant采纳,获得10
13秒前
Ava应助SL采纳,获得10
14秒前
xxxyuxi发布了新的文献求助10
14秒前
17秒前
Bio应助Nelson采纳,获得30
18秒前
Triste发布了新的文献求助10
18秒前
19秒前
19秒前
幽默的小之完成签到,获得积分10
19秒前
落寞奎完成签到,获得积分10
19秒前
21秒前
21秒前
oliver1234完成签到,获得积分10
21秒前
21秒前
月下荷花发布了新的文献求助10
22秒前
xxxyuxi完成签到,获得积分10
22秒前
oliver1234发布了新的文献求助20
24秒前
24秒前
Lucas应助Chenyan775199采纳,获得10
25秒前
李浩然发布了新的文献求助10
25秒前
25秒前
26秒前
阳佟听荷发布了新的文献求助10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182