Physics simulation capabilities of LLMs

物理
作者
Mohamad Ali-Dib,Kristen Menou
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad7a27
摘要

Abstract Large Language Models (LLMs) can solve some undergraduate-level to graduate-level physics text-
book problems and are proficient at coding. Combining these two capabilities could one day enable
AI systems to simulate and predict the physical world.
We present an evaluation of state-of-the-art (SOTA) LLMs on PhD-level to research-level computational physics problems. We condition LLM generation on the use of well-documented and widely-used
packages to elicit coding capabilities in the physics and astrophysics domains. We contribute ∼ 50
original and challenging problems in celestial mechanics (with REBOUND), stellar physics (with MESA),
1D fluid dynamics (with Dedalus) and non-linear dynamics (with SciPy). Since our problems do not
admit unique solutions, we evaluate LLM performance on several soft metrics: counts of lines that contain different types of errors (coding, physics, necessity and sufficiency) as well as a more ‘educational’
Pass-Fail metric focused on capturing the salient physical ingredients of the problem at hand.
As expected, today’s SOTA LLM (GPT4) zero-shot fails most of our problems, although about 40%
of the solutions could plausibly get a passing grade. About 70−90% of the code lines produced are
necessary, sufficient and correct (coding & physics). Physics and coding errors are the most common,
with some unnecessary or insufficient lines. We observe significant variations across problem class and
difficulty. We identify several failure modes of GPT4 in the computational physics domain, such as
poor physical units handling, poor code versioning, tendency to hallucinate plausible sub-modules,
lack of physical justification for global run parameters (e.g., simulation time, or upper-lower bounds
for parametric exploration) and inability to define steady-state or stopping conditions reliably.
Our reconnaissance work provides a snapshot of current computational capabilities in classical physics
and points to obvious improvement targets if AI systems are ever to reach a basic level of autonomy
in physics simulation capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的万天完成签到 ,获得积分10
刚刚
QP34完成签到 ,获得积分10
1秒前
陈朝鑫发布了新的文献求助30
1秒前
1秒前
蒋蒋蒋发布了新的文献求助10
2秒前
my123完成签到,获得积分10
2秒前
松江完成签到,获得积分10
3秒前
yang发布了新的文献求助150
3秒前
橘子石榴完成签到,获得积分10
4秒前
MichaelQin完成签到,获得积分10
4秒前
明理念桃完成签到,获得积分10
4秒前
123完成签到 ,获得积分10
5秒前
浙江嘉兴完成签到,获得积分10
5秒前
desperate完成签到,获得积分10
5秒前
6秒前
6秒前
liupai00发布了新的文献求助10
7秒前
8秒前
小狗完成签到,获得积分10
8秒前
CodeCraft应助松江采纳,获得10
9秒前
闲云野鹤完成签到,获得积分10
9秒前
天天好心覃完成签到 ,获得积分10
9秒前
Wangyingjie5完成签到 ,获得积分10
10秒前
Larissa应助luqqq采纳,获得50
10秒前
11秒前
ninalee完成签到,获得积分10
11秒前
Jasonjoey发布了新的文献求助10
12秒前
岁月浪翻了完成签到,获得积分10
12秒前
阳生发布了新的文献求助10
13秒前
疗伤烧肉粽完成签到,获得积分10
13秒前
14秒前
许诺完成签到,获得积分10
14秒前
15秒前
咕咕咕完成签到,获得积分10
16秒前
丁丁丁完成签到,获得积分10
16秒前
17秒前
无心完成签到,获得积分10
17秒前
打打应助不凡采纳,获得10
17秒前
乐乐应助刘家辉采纳,获得10
17秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261909
求助须知:如何正确求助?哪些是违规求助? 2902640
关于积分的说明 8321238
捐赠科研通 2572561
什么是DOI,文献DOI怎么找? 1397755
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632341