Generation of adaptive refinement tetrahedral meshes over domains of multi-chamber partition

多边形网格 分拆(数论) 四面体 数学 几何学 纯数学 组合数学
作者
H. X. Huang,Julin Shan,S.H. Lo,Fei Yu,Jie Cao,Jihai Chang,Zhenqun Guan
出处
期刊:Engineering Computations [Emerald (MCB UP)]
标识
DOI:10.1108/ec-09-2023-0617
摘要

Purpose In this study, we propose a tetrahedral mesh generation and adaptive refinement method for multi-chamber, multi-facet, multiscale and surface-solid mesh coupling with extremely thin layers, solving the two challenges of mesh generation and refinement in current electromagnetic simulation models. Design/methodology/approach Utilizing innovative topology transformation techniques, high-precision intersection judgment algorithms and highly reliable boundary recovery algorithms to reduce the number of Steiner locking points. The feasible space for the reposition of Steiner points is determined by using the linear programming. During mesh refinement, an edge-split method based on geometric center and boundary facets node size is devised. Solving the problem of difficult insertion of nodes in narrow geometric spaces, capable of filtering the longest and boundary edges of tetrahedrons, refining the mesh layer by layer through multiple iterations, and achieving collaborative optimization of surface and tetrahedral mesh. Simultaneously, utilizing a surface-facet preserving mesh topology optimization algorithm to improve the fit degree between the mesh and geometry. Findings Initial mesh generation for electromagnetic models, compared to commercial software, the method proposed in this paper has a higher pass rate and better mesh quality. For the adaptive refinement performance of high-frequency computing, this method can generate an average of 50% fewer meshes compared to commercial software while meeting simulation accuracy. Originality/value This paper proposes a complete set of mesh generation and adaptive refinement theories and methods designed for the structural characteristics of electromagnetic simulation models, which meet the needs of real-world industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠熠完成签到,获得积分10
1秒前
wangping发布了新的文献求助10
1秒前
李爱国应助小豆芽儿采纳,获得10
1秒前
2秒前
2秒前
FFF完成签到,获得积分20
3秒前
学术小黄完成签到,获得积分10
3秒前
么系么系发布了新的文献求助10
3秒前
4秒前
小洪俊熙完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
SYLH应助di采纳,获得10
5秒前
5秒前
柒毛完成签到 ,获得积分10
6秒前
搜集达人应助tatata采纳,获得20
6秒前
英俊的铭应助诚c采纳,获得10
6秒前
兔子完成签到 ,获得积分10
6秒前
6秒前
苹果巧蕊完成签到 ,获得积分10
6秒前
脑洞疼应助SDS采纳,获得10
6秒前
JamesPei应助Guo采纳,获得20
7秒前
马保国123完成签到,获得积分10
7秒前
7秒前
7秒前
迷你的冰巧完成签到,获得积分10
7秒前
万能图书馆应助学术蝗虫采纳,获得10
8秒前
慕青应助aurora采纳,获得30
8秒前
Jasper应助满意的盼夏采纳,获得10
8秒前
yitang完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
zhenzhen发布了新的文献求助10
10秒前
飞羽发布了新的文献求助10
10秒前
江沅完成签到 ,获得积分10
10秒前
11秒前
11秒前
Sean完成签到,获得积分10
11秒前
兜兜完成签到 ,获得积分10
11秒前
羊羊羊发布了新的文献求助10
12秒前
Rui完成签到,获得积分10
12秒前
bigger.b完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678