已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Real-Time Prediction of Reclaimed Water Volumes Using the Improved Transformer Model and Decomposition Integration Technology

计算机科学 变压器 异常检测 梯度升压 数据挖掘 机器学习 人工智能 工程类 电压 随机森林 电气工程
作者
Xiangyu Sun,Shouxin Zhang,Chao Wang,Yiyang Yang,Hao Wang
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (15): 6598-6598 被引量:1
标识
DOI:10.3390/su16156598
摘要

In recent years, wastewater reuse has become crucial for addressing global freshwater scarcity and promoting sustainable water resource development. Accurate inflow volume predictions are essential for enhancing operational efficiency in water treatment facilities and effective wastewater utilization. Traditional and decomposition integration models often struggle with non-stationary time series, particularly in peak and anomaly sensitivity. To address this challenge, a differential decomposition integration model based on real-time rolling forecasts has been developed. This model uses an initial prediction with a machine learning (ML) model, followed by differential decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). A Time-Aware Outlier-Sensitive Transformer (TS-Transformer) is then applied for integrated predictions. The ML-CEEMDAN-TSTF model demonstrated superior accuracy compared to basic ML models, decomposition integration models, and other Transformer-based models. This hybrid model explicitly incorporates time-scale differentiated information as a feature, improving the model’s adaptability to complex environmental data and predictive performance. The TS-Transformer was designed to make the model more sensitive to anomalies and peaks in time series, addressing issues such as anomalous data, uncertainty in water volume data, and suboptimal forecasting accuracy. The results indicated that: (1) the introduction of time-scale differentiated information significantly enhanced model accuracy; (2) ML-CEEMDAN-TSTF demonstrated higher accuracy compared to ML-CEEMDAN-Transformer; (3) the TS-Transformer-based decomposition integration model consistently outperformed those based on LSTM and eXtreme Gradient Boosting (XGBoost). Consequently, this research provides a precise and robust method for predicting reclaimed water volumes, which holds significant implications for research on clean water and water environment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
hurricane发布了新的文献求助10
9秒前
酷酷的安柏完成签到 ,获得积分10
10秒前
66完成签到 ,获得积分10
10秒前
慕青应助专注雁桃采纳,获得10
10秒前
11秒前
11秒前
科研通AI2S应助LBJ23采纳,获得10
12秒前
6666完成签到,获得积分10
12秒前
13秒前
15秒前
吴三岁完成签到 ,获得积分10
17秒前
帅气绮露发布了新的文献求助10
19秒前
勤奋的姒完成签到 ,获得积分10
20秒前
zebra完成签到 ,获得积分10
20秒前
善学以致用应助义气绿柳采纳,获得10
25秒前
Lucas应助研友_n0Dmwn采纳,获得10
28秒前
爆米花应助蓦然回首采纳,获得20
30秒前
朝花夕拾完成签到 ,获得积分10
33秒前
34秒前
37秒前
38秒前
科研通AI2S应助愉快的御姐采纳,获得10
38秒前
lixundie完成签到,获得积分10
39秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
41秒前
西瓜汽水完成签到,获得积分10
41秒前
艾欧比发布了新的文献求助10
42秒前
43秒前
47秒前
迪迦发布了新的文献求助10
49秒前
51秒前
雨寒发布了新的文献求助10
52秒前
53秒前
顺利山蝶发布了新的文献求助10
53秒前
清净163完成签到,获得积分10
58秒前
59秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229546
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8198010
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374437
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749