Dynamic Real-Time Prediction of Reclaimed Water Volumes Using the Improved Transformer Model and Decomposition Integration Technology

计算机科学 变压器 异常检测 梯度升压 数据挖掘 机器学习 人工智能 工程类 电压 随机森林 电气工程
作者
Xiangyu Sun,Shouxin Zhang,Chao Wang,Yiyang Yang,Hao Wang
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (15): 6598-6598 被引量:1
标识
DOI:10.3390/su16156598
摘要

In recent years, wastewater reuse has become crucial for addressing global freshwater scarcity and promoting sustainable water resource development. Accurate inflow volume predictions are essential for enhancing operational efficiency in water treatment facilities and effective wastewater utilization. Traditional and decomposition integration models often struggle with non-stationary time series, particularly in peak and anomaly sensitivity. To address this challenge, a differential decomposition integration model based on real-time rolling forecasts has been developed. This model uses an initial prediction with a machine learning (ML) model, followed by differential decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). A Time-Aware Outlier-Sensitive Transformer (TS-Transformer) is then applied for integrated predictions. The ML-CEEMDAN-TSTF model demonstrated superior accuracy compared to basic ML models, decomposition integration models, and other Transformer-based models. This hybrid model explicitly incorporates time-scale differentiated information as a feature, improving the model’s adaptability to complex environmental data and predictive performance. The TS-Transformer was designed to make the model more sensitive to anomalies and peaks in time series, addressing issues such as anomalous data, uncertainty in water volume data, and suboptimal forecasting accuracy. The results indicated that: (1) the introduction of time-scale differentiated information significantly enhanced model accuracy; (2) ML-CEEMDAN-TSTF demonstrated higher accuracy compared to ML-CEEMDAN-Transformer; (3) the TS-Transformer-based decomposition integration model consistently outperformed those based on LSTM and eXtreme Gradient Boosting (XGBoost). Consequently, this research provides a precise and robust method for predicting reclaimed water volumes, which holds significant implications for research on clean water and water environment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强子今天读文献了嘛完成签到,获得积分10
刚刚
浮浮世世发布了新的文献求助10
刚刚
刚刚
CTtoF完成签到,获得积分10
刚刚
1秒前
huanger完成签到,获得积分0
2秒前
3秒前
harrison完成签到,获得积分20
3秒前
狂野未来发布了新的文献求助10
4秒前
花露水完成签到,获得积分20
4秒前
4秒前
5秒前
小蘑菇应助咔咔采纳,获得10
7秒前
qzp发布了新的文献求助10
7秒前
leaolf应助称心曼安采纳,获得20
7秒前
顺心的巨人完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
项目多多完成签到,获得积分10
8秒前
8秒前
欢呼的冰蝶完成签到,获得积分10
8秒前
田様应助msy1998采纳,获得10
8秒前
9秒前
drdouxia发布了新的文献求助10
9秒前
老黄鱼完成签到,获得积分10
9秒前
宁人完成签到,获得积分10
9秒前
科研通AI5应助jyyg采纳,获得10
10秒前
蜒栩柚子完成签到 ,获得积分10
10秒前
明亮玉米完成签到,获得积分10
10秒前
我2023发布了新的文献求助10
10秒前
11秒前
harrison关注了科研通微信公众号
12秒前
harrison关注了科研通微信公众号
12秒前
fox完成签到 ,获得积分10
12秒前
李健应助梦玲采纳,获得10
13秒前
朱sq发布了新的文献求助10
13秒前
华仔应助宁人采纳,获得10
13秒前
桐桐应助可爱deyi采纳,获得10
14秒前
科研狗完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513