亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Real-Time Prediction of Reclaimed Water Volumes Using the Improved Transformer Model and Decomposition Integration Technology

计算机科学 变压器 异常检测 梯度升压 数据挖掘 机器学习 人工智能 工程类 电压 电气工程 随机森林
作者
Xiangyu Sun,Shouxin Zhang,Chao Wang,Yiyang Yang,Hao Wang
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (15): 6598-6598 被引量:1
标识
DOI:10.3390/su16156598
摘要

In recent years, wastewater reuse has become crucial for addressing global freshwater scarcity and promoting sustainable water resource development. Accurate inflow volume predictions are essential for enhancing operational efficiency in water treatment facilities and effective wastewater utilization. Traditional and decomposition integration models often struggle with non-stationary time series, particularly in peak and anomaly sensitivity. To address this challenge, a differential decomposition integration model based on real-time rolling forecasts has been developed. This model uses an initial prediction with a machine learning (ML) model, followed by differential decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). A Time-Aware Outlier-Sensitive Transformer (TS-Transformer) is then applied for integrated predictions. The ML-CEEMDAN-TSTF model demonstrated superior accuracy compared to basic ML models, decomposition integration models, and other Transformer-based models. This hybrid model explicitly incorporates time-scale differentiated information as a feature, improving the model’s adaptability to complex environmental data and predictive performance. The TS-Transformer was designed to make the model more sensitive to anomalies and peaks in time series, addressing issues such as anomalous data, uncertainty in water volume data, and suboptimal forecasting accuracy. The results indicated that: (1) the introduction of time-scale differentiated information significantly enhanced model accuracy; (2) ML-CEEMDAN-TSTF demonstrated higher accuracy compared to ML-CEEMDAN-Transformer; (3) the TS-Transformer-based decomposition integration model consistently outperformed those based on LSTM and eXtreme Gradient Boosting (XGBoost). Consequently, this research provides a precise and robust method for predicting reclaimed water volumes, which holds significant implications for research on clean water and water environment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
jj发布了新的文献求助30
13秒前
柳代云发布了新的文献求助10
23秒前
sjj完成签到,获得积分10
34秒前
47秒前
Criminology34应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
54秒前
bkagyin应助lezbj99采纳,获得10
58秒前
紧张的以山完成签到,获得积分10
58秒前
Akim应助lezbj99采纳,获得10
1分钟前
anqi6688完成签到,获得积分10
1分钟前
HUSH完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助anqi6688采纳,获得10
1分钟前
111完成签到 ,获得积分10
2分钟前
科目三应助GPTea采纳,获得10
2分钟前
Augustines完成签到,获得积分10
2分钟前
冷静新烟完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Magali应助科研通管家采纳,获得30
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
清脆的飞丹完成签到,获得积分10
3分钟前
冷静新烟发布了新的文献求助10
3分钟前
Krsky完成签到,获得积分10
3分钟前
浮游应助GPTea采纳,获得10
3分钟前
HUSH发布了新的文献求助20
3分钟前
Hugrainbow完成签到,获得积分10
3分钟前
maher完成签到 ,获得积分10
3分钟前
酷波er应助GPTea采纳,获得10
3分钟前
五四三二一完成签到 ,获得积分10
4分钟前
4分钟前
DPH完成签到 ,获得积分10
4分钟前
冷静新烟发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116357
求助须知:如何正确求助?哪些是违规求助? 4323015
关于积分的说明 13469810
捐赠科研通 4155310
什么是DOI,文献DOI怎么找? 2277113
邀请新用户注册赠送积分活动 1278970
关于科研通互助平台的介绍 1217011