Development of optimised causal AI and its application in retail banking

零售银行业务 业务 营销
作者
Sai Chaitanya Molabanti,Lakshmi Kiran Kanchi,Venkateshwarlu Sonathi,Rajanikanth Annam
标识
DOI:10.69554/qpae5180
摘要

Causal artificial intelligence (AI) has emerged as a promising approach in machine learning (ML), as it considers not only correlations but also cause-and-effect relationships in data, resulting in more human-like decision making. The pivotal stages within causal AI involve causal discovery and inferencing, each playing a crucial role in extracting meaningful insights from the data. In the realm of causal discovery, various algorithms have been developed to uncover the underlying cause-and-effect structures within data sets. A notable limitation, however, surfaces when attempting to apply these algorithms to data sets characterised by binary variables. This constraint prompts a crucial examination of the current methodologies and calls for innovative solutions that can seamlessly navigate the complexities of binary variable data sets. This paper proposes an optimised causal discovery algorithm that is integrated with the causal inference method based on the estimation of conditional average treatment effects (CATE) scores. The results present the potential of causal AI in terms of incremental impact on the predictive capability of AI/ML models. And the incremental impact is elucidated by comparing conventional propensity-based modelling and causal AI-based modelling by means of a use case in the field of retail banking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任梓宁发布了新的文献求助10
刚刚
十yu发布了新的文献求助10
刚刚
明月关注了科研通微信公众号
刚刚
刚刚
冰糖雪梨完成签到 ,获得积分10
刚刚
zhaoming发布了新的文献求助10
1秒前
科研通AI5应助zhilanyao采纳,获得30
1秒前
melon完成签到,获得积分10
1秒前
我心飞翔发布了新的文献求助10
1秒前
2秒前
2秒前
喜乐多完成签到,获得积分10
2秒前
persist完成签到,获得积分10
2秒前
wmx发布了新的文献求助10
2秒前
2秒前
忆韶完成签到,获得积分10
3秒前
3秒前
melon发布了新的文献求助10
4秒前
cwqcqw发布了新的文献求助10
4秒前
222123发布了新的文献求助10
4秒前
4秒前
玠岚发布了新的文献求助10
5秒前
明理的幻梦完成签到,获得积分20
5秒前
fdkufghkd完成签到,获得积分10
5秒前
酷波er应助独特雁枫采纳,获得10
5秒前
英俊的铭应助ZHQ采纳,获得10
6秒前
啵啵完成签到 ,获得积分20
6秒前
追求科研的小白完成签到,获得积分10
6秒前
小高飞飞飞完成签到,获得积分10
6秒前
BJ_whc发布了新的文献求助10
7秒前
7秒前
随机发布了新的文献求助20
8秒前
yihoxu发布了新的文献求助10
8秒前
冷艳莛发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
留胡子的书桃完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541156
求助须知:如何正确求助?哪些是违规求助? 3118348
关于积分的说明 9335388
捐赠科研通 2816304
什么是DOI,文献DOI怎么找? 1548299
邀请新用户注册赠送积分活动 721471
科研通“疑难数据库(出版商)”最低求助积分说明 712690