Transfer Learning for Cross-City Traffic Prediction to Solve Data Scarcity

稀缺 学习迁移 计算机科学 人工智能 经济 微观经济学
作者
Xijun Zhang,Guangyu Wan,Hong Zhang
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241283013
摘要

Deep learning models have demonstrated significant achievements in traffic prediction. However, their predictive performance substantially declines when faced with the scarcity of urban traffic data. Addressing the challenges of data scarcity and heterogeneity between cities, cross-city transfer learning has emerged as a promising solution. This paper proposes a domain adaptation cross-city model, which integrates traffic data with auxiliary urban data for domain adaptation in cross-city transfer learning. Specifically, we designed a domain fusion module to measure the differences between cities. Firstly, the knowledge extractor within the domain fusion module learns the knowledge from urban auxiliary data, such as road networks and points of interest, and calculates transferable knowledge. Then, dynamic time warping is used to measure the similarity of traffic time series. By combining these two aspects, we derive the domain differences between cities. Finally, the spatiotemporal network undergoes pre-learning using abundant data from the source city. According to the differences between cities, the model is fine-tuned to improve the adaptability of the model to the target domain. Experimental results on real-world data validate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
刚刚
青衣北风发布了新的文献求助10
刚刚
勤恳的火龙果完成签到,获得积分10
1秒前
可一完成签到,获得积分20
1秒前
1秒前
捕鱼小猫勇往直前完成签到,获得积分10
1秒前
英姑应助zzzzzyy采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
蓝橙发布了新的文献求助10
4秒前
xmy完成签到,获得积分10
4秒前
布蓝图完成签到 ,获得积分10
4秒前
5秒前
klicking完成签到,获得积分10
5秒前
masheng发布了新的文献求助10
5秒前
5秒前
mawenting发布了新的文献求助10
5秒前
无情心情完成签到 ,获得积分10
6秒前
洛苏完成签到,获得积分10
6秒前
嘟嘟完成签到,获得积分10
6秒前
7秒前
7秒前
鹤轸完成签到,获得积分10
7秒前
7秒前
heyan完成签到,获得积分10
8秒前
小白熊温妮莎完成签到,获得积分20
8秒前
咔咔咔完成签到,获得积分10
8秒前
铅笔995发布了新的文献求助10
8秒前
8秒前
慕青应助aliao采纳,获得10
9秒前
9秒前
024680完成签到,获得积分10
9秒前
9秒前
10秒前
SYX完成签到,获得积分10
10秒前
10秒前
黄晃晃完成签到,获得积分10
10秒前
chenxuan发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740