Transfer Learning for Cross-City Traffic Prediction to Solve Data Scarcity

稀缺 学习迁移 计算机科学 人工智能 经济 微观经济学
作者
Xijun Zhang,Guangyu Wan,Hong Zhang
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241283013
摘要

Deep learning models have demonstrated significant achievements in traffic prediction. However, their predictive performance substantially declines when faced with the scarcity of urban traffic data. Addressing the challenges of data scarcity and heterogeneity between cities, cross-city transfer learning has emerged as a promising solution. This paper proposes a domain adaptation cross-city model, which integrates traffic data with auxiliary urban data for domain adaptation in cross-city transfer learning. Specifically, we designed a domain fusion module to measure the differences between cities. Firstly, the knowledge extractor within the domain fusion module learns the knowledge from urban auxiliary data, such as road networks and points of interest, and calculates transferable knowledge. Then, dynamic time warping is used to measure the similarity of traffic time series. By combining these two aspects, we derive the domain differences between cities. Finally, the spatiotemporal network undergoes pre-learning using abundant data from the source city. According to the differences between cities, the model is fine-tuned to improve the adaptability of the model to the target domain. Experimental results on real-world data validate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
charles发布了新的文献求助10
2秒前
orixero应助Savannah采纳,获得10
2秒前
sxj发布了新的文献求助10
3秒前
orixero应助项南风采纳,获得10
4秒前
传奇3应助ym采纳,获得10
6秒前
求助人员发布了新的文献求助10
6秒前
6秒前
7秒前
小怪兽完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
ding应助科研通管家采纳,获得30
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Whim应助科研通管家采纳,获得50
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得30
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720240
求助须知:如何正确求助?哪些是违规求助? 5259215
关于积分的说明 15290544
捐赠科研通 4869684
什么是DOI,文献DOI怎么找? 2614942
邀请新用户注册赠送积分活动 1564958
关于科研通互助平台的介绍 1522093