Graph Neural Network-Based Molecular Property Prediction with Patch Aggregation

计算机科学 财产(哲学) 人工神经网络 图形 数据挖掘 人工智能 机器学习 理论计算机科学 哲学 认识论
作者
T. J. J. See,Daokun Zhang,Mario Boley,David K. Chalmers
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c00798
摘要

Graph neural networks (GNNs) have emerged as powerful tools for quantum chemical property prediction, leveraging the inherent graph structure of molecular systems. GNNs depend on an edge-to-node aggregation mechanism for combining edge representations into node representations. Unfortunately, existing learnable edge-to-node aggregation methods substantially increase the number of parameters and, thus, the computational cost relative to simple sum aggregation. Worse, as we report here, they often fail to improve predictive accuracy. We therefore propose a novel learnable edge-to-node aggregation mechanism that aims to improve the accuracy and parameter efficiency of GNNs in predicting molecular properties. The new mechanism, called "patch aggregation", is inspired by the Multi-Head Attention and Mixture of Experts machine learning techniques. We have incorporated the patch aggregation method into the specialized, state-of-the-art GNN models SchNet, DimeNet++, SphereNet, TensorNet, and VisNet and show that patch aggregation consistently outperforms existing learnable and nonlearnable aggregation techniques (sum, multilayer perceptron, softmax, and set transformer aggregation) in the prediction of molecular properties such as QM9 thermodynamic properties and MD17 molecular dynamics trajectory energies and forces. We also find that patch aggregation not only improves prediction accuracy but also is parameter-efficient, making it an attractive option for practical applications for which computational resources are limited. Further, we show that Patch aggregation can be applied across different GNN models. Overall, Patch aggregation is a powerful edge-to-node aggregation mechanism that improves the accuracy of molecular property predictions by GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助TIGun采纳,获得10
2秒前
5秒前
5秒前
6秒前
加贝完成签到,获得积分10
7秒前
cx发布了新的文献求助10
8秒前
颠颠的哦发布了新的文献求助10
8秒前
毛豆应助发酱采纳,获得10
8秒前
9秒前
惜风完成签到,获得积分10
9秒前
academician发布了新的文献求助10
10秒前
ipainkiller发布了新的文献求助10
11秒前
809发布了新的文献求助10
11秒前
11秒前
Lucas应助xiongdi521采纳,获得10
12秒前
14秒前
领导范儿应助发酱采纳,获得10
15秒前
Lee发布了新的文献求助20
15秒前
15秒前
17秒前
18秒前
20秒前
李泉岑发布了新的文献求助10
20秒前
phy发布了新的文献求助10
21秒前
蒋50完成签到,获得积分10
21秒前
老王完成签到,获得积分10
21秒前
ceeray23应助一二采纳,获得10
22秒前
23秒前
xiongdi521发布了新的文献求助10
23秒前
朴素荠完成签到,获得积分20
24秒前
潘岩发布了新的文献求助10
25秒前
研友_VZG7GZ应助发酱采纳,获得10
25秒前
31秒前
31秒前
桔子完成签到 ,获得积分10
33秒前
35秒前
爆米花应助yhz123采纳,获得10
36秒前
提米橘发布了新的文献求助50
36秒前
颠颠的哦完成签到,获得积分10
37秒前
38秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434032
求助须知:如何正确求助?哪些是违规求助? 3031223
关于积分的说明 8941345
捐赠科研通 2719217
什么是DOI,文献DOI怎么找? 1491694
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523