PI3K/AKT/mTOR通路
聚合物囊泡
化学
褪黑素
细胞毒性T细胞
蛋白激酶B
癌症
癌细胞
细胞凋亡
癌症研究
细胞生物学
生物
生物化学
医学
体外
内科学
内分泌学
有机化学
共聚物
两亲性
聚合物
作者
Zhiyuan Fan,Yang Shao,Xiao Jiang,Jinglan Zhou,Liang Yang,Haitao Chen,Wentao Liu
标识
DOI:10.1016/j.ijbiomac.2024.134187
摘要
In this study, a formulation of NaGdF4:Tm/Er@NaGdF4 (core@shell) UCNPs loaded with melatonin drug was synthesized. The novel melatonin-loaded UCNPs were then encapsulated within NIR-responsive biopolymeric chitosan (CS) based polymersome and investigated against gastric cancer (HGC27 & AGS) cells. The photolysis of the ONB moiety and disruption of the disulfide linkage in the polymersome induced by NIR light facilitated by the NaGdF4:Tm/Er@NaGdF4 UCNPs and GSH results in an increased release of melatonin drug. The DLS and zeta potential measurements exhibit a reduced particle size (21.9 ± 3.56 nm) and a low zeta potential (17.91 mV). Furthermore, drug release profiles demonstrated superior melatonin drug release (79.78 %) at pH 5.0 for CS-polymersome-coated melatonin-UCNPs resembling the Hixson-Crowell model. Remarkably, CS-polymersome-coated melatonin-UCNPs exhibit excellent anti-proliferative properties for HGC27 (IC50 = 0.096 μM) and AGS (IC50 = 0.16 μM) cancer cells. The flow cytometry data demonstrate a significant elevation in ROS levels which promoted cell death in both HGC-27 and AGS cells. The observed cell mortality in HGC-27 and AGS cells is primarily caused by the destruction of the nucleus, mtDNA, rupture of disulfide (R-S-S-R) bonds, and nuclear DNA. Contrarily, L929 and HUVECs cells incubated with CS-polymersome coated melatonin-UCNPs (100 μg/mL) reveal a notable cell viability of 88.7 % and 93 % indicating superior biocompatibility. The western blotting analysis revealed the induction of autophagy by CS-polymersome-coated melatonin-UCNPs which subsequently led to apoptosis by regulating the ROS/PI3K/Akt/mTOR molecular signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI