The role of the age and gender, and the complexity of the syntactic unit in the perception of affective emotions in voice

感知 心理学 单位(环理论) 认知心理学 听力学 语音识别 计算机科学 医学 神经科学 数学教育
作者
Baiba Trinīte,Anita Zdanovica,Daiga Kurme,Evija Lavrane,Ilva Magazeina,Anita Jansone
出处
期刊:CoDAS [SciELO]
卷期号:36 (5)
标识
DOI:10.1590/2317-1782/20242024009en
摘要

Purpose The study aimed to identify (1) whether the age and gender of listeners and the length of vocal stimuli affect emotion discrimination accuracy in voice; and (2) whether the determined level of expression of perceived affective emotions is age and gender-dependent. Methods Thirty-two age-matched listeners listened to 270 semantically neutral voice samples produced in neutral, happy, and angry intonation by ten professional actors. The participants were required to categorize the auditory stimulus based on three options and judge the intensity of emotional expression in the sample using a customized tablet web interface. Results The discrimination accuracy of happy and angry emotions decreased with age, while accuracy in discriminating neutral emotions increased with age. Females rated the intensity level of perceived affective emotions higher than males across all linguistic units. These were: for angry emotions in words (z = -3.599, p < .001), phrases (z = -3.218, p = .001), and texts (z = -2.272, p = .023), for happy emotions in words (z = -5.799, p < .001), phrases (z = -4.706, p < .001), and texts (z = -2.699, p = .007). Conclusion Accuracy in perceiving vocal expressions of emotions varies according to age and gender. Young adults are better at distinguishing happy and angry emotions than middle-aged adults, while middle-aged adults tend to categorize perceived affective emotions as neutral. Gender also plays a role, with females rating expressions of affective emotions in voices higher than males. Additionally, the length of voice stimuli impacts emotion discrimination accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜盒子发布了新的文献求助10
刚刚
ximu完成签到,获得积分20
刚刚
CLN完成签到,获得积分10
刚刚
SciGPT应助单薄凌蝶采纳,获得50
1秒前
1秒前
111完成签到,获得积分10
1秒前
小马甲应助117采纳,获得10
1秒前
甜甜的猫咪完成签到,获得积分10
1秒前
1秒前
66应助马佳凯采纳,获得10
1秒前
2秒前
是述不是沭完成签到,获得积分10
2秒前
3秒前
lei完成签到,获得积分10
3秒前
瘦瘦的背包完成签到,获得积分10
4秒前
4秒前
赘婿应助Elaine采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研小白完成签到,获得积分10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得50
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
控制小弟应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740