Unsupervised Domain Adaptation for EM Image Denoising with Invertible Networks

人工智能 图像去噪 计算机科学 可逆矩阵 图像(数学) 降噪 模式识别(心理学) 适应(眼睛) 计算机视觉 领域(数学分析) 域适应 数学 数学分析 物理 分类器(UML) 纯数学 光学
作者
Shiyu Deng,Yinda Chen,Wei Huang,Ruobing Zhang,Zhiwei Xiong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3431192
摘要

Electron microscopy (EM) image denoising is critical for visualization and subsequent analysis. Despite the remarkable achievements of deep learning-based non-blind denoising methods, their performance drops significantly when domain shifts exist between the training and testing data. To address this issue, unpaired blind denoising methods have been proposed. However, these methods heavily rely on image-to-image translation and neglect the inherent characteristics of EM images, limiting their overall denoising performance. In this paper, we propose the first unsupervised domain adaptive EM image denoising method, which is grounded in the observation that EM images from similar samples share common content characteristics. Specifically, we first disentangle the content representations and the noise components from noisy images and establish a shared domain-agnostic content space via domain alignment to bridge the synthetic images (source domain) and the real images (target domain). To ensure precise domain alignment, we further incorporate domain regularization by enforcing that: the pseudo-noisy images, reconstructed using both content representations and noise components, accurately capture the characteristics of the noisy images from which the noise components originate, all while maintaining semantic consistency with the noisy images from which the content representations originate. To guarantee lossless representation decomposition and image reconstruction, we introduce disentanglement-reconstruction invertible networks. Finally, the reconstructed pseudo-noisy images, paired with their corresponding clean counterparts, serve as valuable training data for the denoising network. Extensive experiments on synthetic and real EM datasets demonstrate the superiority of our method in terms of image restoration quality and downstream neuron segmentation accuracy. Our code is publicly available at https://github.com/sydeng99/DADn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦白昼完成签到 ,获得积分10
1秒前
Hey完成签到,获得积分10
2秒前
抽屉里的砖头完成签到,获得积分10
2秒前
雪白元风完成签到 ,获得积分10
2秒前
郝田田完成签到,获得积分10
3秒前
合适如音完成签到,获得积分10
3秒前
Wey完成签到 ,获得积分10
3秒前
yuanzhang2030完成签到,获得积分10
3秒前
EunolusZ发布了新的文献求助10
4秒前
jyy应助KongHN采纳,获得10
4秒前
jyy应助KongHN采纳,获得10
4秒前
健忘的迎夏完成签到,获得积分10
4秒前
jyy应助KongHN采纳,获得10
4秒前
科研通AI2S应助KongHN采纳,获得10
4秒前
Ava应助silong采纳,获得10
4秒前
iNk应助玩转非晶采纳,获得10
5秒前
过时的又槐完成签到,获得积分10
5秒前
VDC应助yx采纳,获得30
5秒前
5秒前
zwy完成签到,获得积分10
6秒前
6秒前
欲望被鬼举报gyx求助涉嫌违规
6秒前
123完成签到,获得积分10
6秒前
ljw发布了新的文献求助10
6秒前
7秒前
金阿垚在科研应助yahaha采纳,获得10
7秒前
小冉完成签到,获得积分10
7秒前
深情夏彤完成签到,获得积分10
7秒前
后知后觉发布了新的文献求助10
9秒前
整齐泥猴桃完成签到,获得积分10
9秒前
xiaoxiaomi应助舒涵采纳,获得30
9秒前
情怀应助JERRY采纳,获得10
9秒前
Hungrylunch应助CHL5722采纳,获得20
9秒前
liucong046完成签到,获得积分10
9秒前
9秒前
CodeCraft应助科研cc采纳,获得10
9秒前
10秒前
云里完成签到,获得积分10
10秒前
谦让傲菡完成签到 ,获得积分10
10秒前
小汪完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672