已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Domain Adaptation for EM Image Denoising with Invertible Networks

人工智能 图像去噪 计算机科学 可逆矩阵 图像(数学) 降噪 模式识别(心理学) 适应(眼睛) 计算机视觉 领域(数学分析) 域适应 数学 数学分析 物理 分类器(UML) 纯数学 光学
作者
Shiyu Deng,Yinda Chen,Wei Huang,Ruobing Zhang,Zhiwei Xiong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3431192
摘要

Electron microscopy (EM) image denoising is critical for visualization and subsequent analysis. Despite the remarkable achievements of deep learning-based non-blind denoising methods, their performance drops significantly when domain shifts exist between the training and testing data. To address this issue, unpaired blind denoising methods have been proposed. However, these methods heavily rely on image-to-image translation and neglect the inherent characteristics of EM images, limiting their overall denoising performance. In this paper, we propose the first unsupervised domain adaptive EM image denoising method, which is grounded in the observation that EM images from similar samples share common content characteristics. Specifically, we first disentangle the content representations and the noise components from noisy images and establish a shared domain-agnostic content space via domain alignment to bridge the synthetic images (source domain) and the real images (target domain). To ensure precise domain alignment, we further incorporate domain regularization by enforcing that: the pseudo-noisy images, reconstructed using both content representations and noise components, accurately capture the characteristics of the noisy images from which the noise components originate, all while maintaining semantic consistency with the noisy images from which the content representations originate. To guarantee lossless representation decomposition and image reconstruction, we introduce disentanglement-reconstruction invertible networks. Finally, the reconstructed pseudo-noisy images, paired with their corresponding clean counterparts, serve as valuable training data for the denoising network. Extensive experiments on synthetic and real EM datasets demonstrate the superiority of our method in terms of image restoration quality and downstream neuron segmentation accuracy. Our code is publicly available at https://github.com/sydeng99/DADn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助阮人雄采纳,获得10
1秒前
爱笑乌龟完成签到,获得积分10
2秒前
上官若男应助yana采纳,获得10
2秒前
一一一完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
7秒前
在水一方应助爱笑乌龟采纳,获得10
8秒前
孤独念柏完成签到,获得积分10
9秒前
lyfing发布了新的文献求助10
9秒前
9秒前
雨季发布了新的文献求助10
10秒前
再干一杯发布了新的文献求助10
10秒前
13秒前
showmaker完成签到,获得积分10
14秒前
17秒前
我是老大应助蓝天采纳,获得10
18秒前
百億少女的夢完成签到 ,获得积分10
18秒前
mouxq发布了新的文献求助10
19秒前
拓跋涵易发布了新的文献求助10
19秒前
19秒前
汤博森完成签到,获得积分10
21秒前
璐洋发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
kiwi发布了新的文献求助10
24秒前
25秒前
清欢完成签到,获得积分10
25秒前
26秒前
哥斯拉发布了新的文献求助10
28秒前
热心如彤发布了新的文献求助10
29秒前
在水一方应助fuyuan采纳,获得10
31秒前
31秒前
乐乐应助雨季采纳,获得10
31秒前
33秒前
共享精神应助怡然觅柔采纳,获得10
33秒前
椒盐丸子发布了新的文献求助10
36秒前
37秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129862
求助须知:如何正确求助?哪些是违规求助? 2780645
关于积分的说明 7749422
捐赠科研通 2435969
什么是DOI,文献DOI怎么找? 1294402
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570