材料科学
氮化硼
电解质
化学工程
离子电导率
聚偏氟乙烯
快离子导体
电导率
锂(药物)
复合数
离子键合
聚合物
纳米技术
电极
复合材料
离子
物理化学
有机化学
化学
医学
内分泌学
工程类
作者
Qian He,Xiong Xiong Liu,Guang Xiao,Xuhua He,Wenbin Gong,Lingfei Tang,Qi Chen,Qichong Zhang,Yagang Yao
出处
期刊:Small
[Wiley]
日期:2024-07-14
标识
DOI:10.1002/smll.202403660
摘要
Abstract All‐solid‐state lithium metal batteries (ASSLMBs) have emerged as the most promising next‐generation energy storage devices. However, the unsatisfactory ionic conductivity of solid electrolytes at room temperature has impeded the advancement of solid‐state batteries. In this work, a multifunctional composite solid electrolyte (CSE) is developed by incorporating boron nitride nanotubes (BNNTs) into polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP). BNNTs, with a high aspect ratio, trigger the dissociation of Li salts, thus generating a greater population of mobile Li + , and establishing long‐distance Li + transport pathways. PVDF‐HFP/BNNT exhibits a high ionic conductivity of 8.0 × 10 −4 S cm −1 at room temperature and a Li + transference number of 0.60. Moreover, a Li//Li symmetric cell based on PVDF‐HFP/BNNT demonstrates robust cyclic performance for 3400 h at a current density of 0.2 mA cm −2 . The ASSLMB formed from the assembly of PVDF‐HFP/BNNT with LiFePO 4 and Li exhibits a capacity retention of 93.2% after 850 cycles at 0.5C and 25 °C. The high‐voltage all‐solid‐state LiCoO 2 /Li cell based on PVDF‐HFP/BNNT also exhibits excellent cyclic performance, maintaining a capacity retention of 96.4% after 400 cycles at 1C and 25 °C. Furthermore, the introduction of BNNTs is shown to enhance the thermal conductivity and flame retardancy of the CSE.
科研通智能强力驱动
Strongly Powered by AbleSci AI