Nondestructive Testing Model of Mango Dry Matter Based on Fluorescence Hyperspectral Imaging Technology

高光谱成像 降维 人工智能 计算机科学 模式识别(心理学) 支持向量机 随机森林 特征选择 特征(语言学) 变量消去 数学 遥感 语言学 地质学 哲学 推论
作者
Zhiliang Kang,Jinping Geng,Rongsheng Fan,Chunyi Zhan,Jie Sun,Youli Wu,Lijia Xu,Cheng Liu
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 1337-1337 被引量:15
标识
DOI:10.3390/agriculture12091337
摘要

The dry matter test of mango has important practical significance for the quality classification of mango. Most of the common fruit and vegetable quality nondestructive testing methods based on fluorescence hyperspectral imaging technology use a single algorithm in algorithms such as Uninformative Variable Elimination (UVE), Random Frog (RF), Competitive Adaptive Reweighted Sampling (CARS) and Continuous Projection Algorithm (SPA) to extract feature spectral variables, and the use of these algorithms alone can easily lead to the insufficient stability of prediction results. In this regard, a nondestructive detection method for the dry matter of mango based on hyperspectral fluorescence imaging technology was carried out. Taking the ‘Keitt’ mango as the research object, the mango samples were numbered in sequence, and their fluorescence hyperspectral images in the wavelength range of 350–1100 nm were collected, and the average spectrum of the region of interest was used as the effective spectral information of the sample. Select SPXY algorithm to divide samples into a calibration set and prediction set, and select Orthogonal Signal Correction (OSC) as preprocessing method. For the preprocessed spectra, the primary dimensionality reduction (UVE, SPA, RF, CARS), the primary combined dimensionality reduction (UVE + RF, CARS + RF, CARS + SPA), and the secondary combined dimensionality reduction algorithm ((CARS + SPA)-SPA, (UVE + RF)-SPA) and other 12 algorithms were used to extract feature variables. Separately constructed predictive models for predicting the dry matter of mangoes, namely, Support Vector Regression (SVR), Extreme Learning Machine (ELM), and Back Propagation Neural Network (BPNN) model, were used; The results show that (CARS + RF)-SPA-BPNN has the best prediction performance for mango dry matter, its correlation coefficients were RC2 = 0.9710, RP2 = 0.9658, RMSEC = 0.1418, RMSEP = 0.1526, this method provides a reliable theoretical basis and technical support for the non-destructive detection, and precise and intelligent development of mango dry matter detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肾宝完成签到,获得积分10
1秒前
忘忧Aquarius完成签到,获得积分10
10秒前
活泼的大船完成签到,获得积分10
10秒前
fxy完成签到 ,获得积分10
12秒前
负责以山完成签到 ,获得积分10
22秒前
瓣落的碎梦完成签到,获得积分10
41秒前
昏古完成签到 ,获得积分10
44秒前
昏古关注了科研通微信公众号
47秒前
qin完成签到,获得积分10
53秒前
氕氘氚完成签到 ,获得积分10
54秒前
56秒前
机智访琴完成签到,获得积分10
58秒前
OMR123完成签到,获得积分10
1分钟前
dery完成签到,获得积分10
1分钟前
scenery0510完成签到,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
波波完成签到 ,获得积分10
1分钟前
胖胖橘完成签到 ,获得积分10
1分钟前
安安最可爱完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
丁玲玲完成签到 ,获得积分10
1分钟前
天下无马完成签到 ,获得积分10
2分钟前
Hiram完成签到,获得积分10
2分钟前
平淡尔琴完成签到,获得积分10
2分钟前
郭磊完成签到 ,获得积分10
2分钟前
2分钟前
adkdad完成签到 ,获得积分10
2分钟前
master-f完成签到 ,获得积分10
2分钟前
席江海完成签到,获得积分0
2分钟前
端庄半凡完成签到 ,获得积分10
2分钟前
画龙点睛完成签到,获得积分10
2分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
LLa完成签到 ,获得积分10
3分钟前
正直的松鼠完成签到 ,获得积分10
3分钟前
可爱的函函应助Aman采纳,获得10
3分钟前
康复小白完成签到 ,获得积分10
3分钟前
LLa关注了科研通微信公众号
3分钟前
和平完成签到 ,获得积分10
3分钟前
何校发布了新的文献求助10
3分钟前
权小夏完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541824
求助须知:如何正确求助?哪些是违规求助? 3975315
关于积分的说明 12311450
捐赠科研通 3642806
什么是DOI,文献DOI怎么找? 2006121
邀请新用户注册赠送积分活动 1041507
科研通“疑难数据库(出版商)”最低求助积分说明 930711