Nondestructive Testing Model of Mango Dry Matter Based on Fluorescence Hyperspectral Imaging Technology

高光谱成像 降维 人工智能 计算机科学 模式识别(心理学) 支持向量机 随机森林 特征选择 特征(语言学) 变量消去 数学 遥感 语言学 地质学 哲学 推论
作者
Zhiliang Kang,Jinping Geng,Rongsheng Fan,Chunyi Zhan,Jie Sun,Youli Wu,Lijia Xu,Cheng Liu
出处
期刊:Agriculture [MDPI AG]
卷期号:12 (9): 1337-1337 被引量:15
标识
DOI:10.3390/agriculture12091337
摘要

The dry matter test of mango has important practical significance for the quality classification of mango. Most of the common fruit and vegetable quality nondestructive testing methods based on fluorescence hyperspectral imaging technology use a single algorithm in algorithms such as Uninformative Variable Elimination (UVE), Random Frog (RF), Competitive Adaptive Reweighted Sampling (CARS) and Continuous Projection Algorithm (SPA) to extract feature spectral variables, and the use of these algorithms alone can easily lead to the insufficient stability of prediction results. In this regard, a nondestructive detection method for the dry matter of mango based on hyperspectral fluorescence imaging technology was carried out. Taking the ‘Keitt’ mango as the research object, the mango samples were numbered in sequence, and their fluorescence hyperspectral images in the wavelength range of 350–1100 nm were collected, and the average spectrum of the region of interest was used as the effective spectral information of the sample. Select SPXY algorithm to divide samples into a calibration set and prediction set, and select Orthogonal Signal Correction (OSC) as preprocessing method. For the preprocessed spectra, the primary dimensionality reduction (UVE, SPA, RF, CARS), the primary combined dimensionality reduction (UVE + RF, CARS + RF, CARS + SPA), and the secondary combined dimensionality reduction algorithm ((CARS + SPA)-SPA, (UVE + RF)-SPA) and other 12 algorithms were used to extract feature variables. Separately constructed predictive models for predicting the dry matter of mangoes, namely, Support Vector Regression (SVR), Extreme Learning Machine (ELM), and Back Propagation Neural Network (BPNN) model, were used; The results show that (CARS + RF)-SPA-BPNN has the best prediction performance for mango dry matter, its correlation coefficients were RC2 = 0.9710, RP2 = 0.9658, RMSEC = 0.1418, RMSEP = 0.1526, this method provides a reliable theoretical basis and technical support for the non-destructive detection, and precise and intelligent development of mango dry matter detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caffeine应助sophie采纳,获得10
刚刚
1秒前
p13508397190完成签到,获得积分10
1秒前
香飘飘爱你完成签到,获得积分10
1秒前
1秒前
阿中发布了新的文献求助30
2秒前
roberto20完成签到 ,获得积分10
3秒前
小北发布了新的文献求助10
3秒前
4秒前
jhb发布了新的文献求助10
4秒前
SciGPT应助lianliyou采纳,获得10
4秒前
宫晓丝发布了新的文献求助10
4秒前
4秒前
卡塔赫纳发布了新的文献求助30
5秒前
科研小白菜完成签到,获得积分10
5秒前
希望天下0贩的0应助朱zhu采纳,获得10
6秒前
池池发布了新的文献求助10
6秒前
打打应助洁净方盒采纳,获得10
6秒前
传奇3应助拜拜拜仁采纳,获得10
6秒前
6秒前
6秒前
CipherSage应助白华苍松采纳,获得10
6秒前
认真路人发布了新的文献求助10
8秒前
8秒前
所所应助夏青荷采纳,获得10
8秒前
Allen发布了新的文献求助10
10秒前
wk0635发布了新的文献求助10
10秒前
小蘑菇应助香飘飘爱你采纳,获得10
10秒前
微笑乘云发布了新的文献求助10
12秒前
lihn应助今夜浓稠未到乡采纳,获得50
12秒前
斯文败类应助负责的方盒采纳,获得10
13秒前
大个应助害羞雨南采纳,获得10
14秒前
14秒前
forge发布了新的文献求助20
14秒前
15秒前
15秒前
15秒前
16秒前
了吧完成签到,获得积分10
17秒前
852应助byron采纳,获得10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415283
求助须知:如何正确求助?哪些是违规求助? 3017167
关于积分的说明 8879668
捐赠科研通 2704722
什么是DOI,文献DOI怎么找? 1482989
科研通“疑难数据库(出版商)”最低求助积分说明 685630
邀请新用户注册赠送积分活动 680579