亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells

材料科学 极化(电化学) 氧气 陶瓷 阴极 钙钛矿(结构) 电极 表征(材料科学) 离子键合 路易斯酸 氧化物 化学工程 固体氧化物燃料电池 催化作用 纳米技术 化学 复合材料 离子 阳极 物理化学 冶金 工程类 有机化学 生物化学
作者
Shuo Zhai,Heping Xie,Peng Cui,Daqin Guan,Jian Wang,Siyuan Zhao,Bin Chen,Yufei Song,Zongping Shao,Meng Ni
出处
期刊:Nature Energy [Springer Nature]
卷期号:7 (9): 866-875 被引量:211
标识
DOI:10.1038/s41560-022-01098-3
摘要

Improved, highly active cathode materials are needed to promote the commercialization of ceramic fuel cell technology. However, the conventional trial-and-error process of material design, characterization and testing can make for a long and complex research cycle. Here we demonstrate an experimentally validated machine-learning-driven approach to accelerate the discovery of efficient oxygen reduction electrodes, where the ionic Lewis acid strength (ISA) is introduced as an effective physical descriptor for the oxygen reduction reaction activity of perovskite oxides. Four oxides, screened from 6,871 distinct perovskite compositions, are successfully synthesized and confirmed to have superior activity metrics. Experimental characterization reveals that decreased A-site and increased B-site ISAs in perovskite oxides considerably improve the surface exchange kinetics. Theoretical calculations indicate such improved activity is mainly attributed to the shift of electron pairs caused by polarization distribution of ISAs at sites A and B, which greatly reduces oxygen vacancy formation energy and migration barrier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
17秒前
lifang完成签到 ,获得积分10
17秒前
天天完成签到,获得积分10
21秒前
35秒前
哈哈哈完成签到,获得积分10
53秒前
catherine发布了新的文献求助30
59秒前
爱笑半莲完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
满意外套完成签到 ,获得积分10
1分钟前
凭什么完成签到,获得积分10
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
天天发布了新的文献求助10
2分钟前
2分钟前
jyy完成签到,获得积分10
2分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qing完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
从前的我完成签到 ,获得积分10
4分钟前
Wa1Zh0u发布了新的文献求助10
4分钟前
4分钟前
研友_Zb17ln发布了新的文献求助10
4分钟前
null应助研友_Zb17ln采纳,获得10
4分钟前
4分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402