亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid model based on VMD decomposition, clustering analysis, long short memory network, ensemble learning and error complementation for short-term wind speed forecasting assisted by Flink platform

计算机科学 聚类分析 人工智能 模块化设计 集成学习 机器学习 数据挖掘 操作系统
作者
Zexian Sun,Mingyu Zhao,Guohong Zhao
出处
期刊:Energy [Elsevier]
卷期号:261: 125248-125248 被引量:33
标识
DOI:10.1016/j.energy.2022.125248
摘要

Carving out the stochastic wind speed is still a challenge due to its intrinsic nature. With the wide spread of Internet of Things technology, the amount of data have presented explosive growth, thereby enhancing the difficulty of capturing its inherent characteristics. Therefore, the improvement of training efficiency requires keeping abreast of the forecasting accuracy and stability, which still has the large promotion space. These drawbacks motivate the propose of the hybrid model based on the variational mode decomposition(VMD), clustering analysis, LSTM network, stacking ensemble learning and error complementation for wind speed forecasting in which all the components are performed on Flink platform to ensure the forecasting efficiency. More specifically, the VMD module is employed to disintegrate the wind speed series into a primary trend and several fluctuate sub-series; Next, kmeans clustering and LSTM networks are conducted to deduce the latent characteristics of the primary trend and the stacking ensemble learning consisting of two stages is applied to infer the fluctuate abstractions of the other sub-series; Furthermore, the error complement is incorporated for assessing the error sequence created by the preliminary results. Finally, the experimental results have demonstrated that the proposed model exceeds the contrastive models on forecasting accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
一只西瓜茶完成签到,获得积分20
3秒前
6秒前
SYLH应助chthollychan采纳,获得10
6秒前
6秒前
8秒前
昂莫达发布了新的文献求助10
10秒前
矢思然完成签到,获得积分10
11秒前
mochi发布了新的文献求助10
13秒前
nico完成签到 ,获得积分10
13秒前
搜集达人应助一只西瓜茶采纳,获得30
15秒前
承序完成签到,获得积分10
17秒前
lihongchi完成签到,获得积分10
19秒前
22秒前
善学以致用应助昂莫达采纳,获得10
23秒前
fang发布了新的文献求助10
28秒前
科研通AI5应助三井库里采纳,获得10
34秒前
HMG1COA完成签到 ,获得积分10
47秒前
48秒前
yyds给舒适的晓山的求助进行了留言
51秒前
nico发布了新的文献求助10
54秒前
mm发布了新的文献求助30
55秒前
CipherSage应助Zengyuan采纳,获得10
57秒前
59秒前
三井库里发布了新的文献求助10
1分钟前
调研昵称发布了新的文献求助10
1分钟前
小蘑菇应助小刘采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
小刘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Zengyuan发布了新的文献求助10
1分钟前
王彬完成签到,获得积分10
1分钟前
Ava应助SCT采纳,获得20
1分钟前
mm完成签到,获得积分10
1分钟前
奶黄包完成签到 ,获得积分10
1分钟前
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073420
关于积分的说明 9130940
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517525
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701143