How Nitrogen and Sulfur Doping Modified Material Structure, Transformed Oxidation Pathways, and Improved Degradation Performance in Peroxymonosulfate Activation

杂原子 化学 降级(电信) 催化作用 兴奋剂 石墨烯 密度泛函理论 活化能 氧化物 硫黄 光化学 化学工程 无机化学 材料科学 纳米技术 有机化学 计算化学 戒指(化学) 电信 工程类 光电子学 计算机科学
作者
Xiaochi Feng,Zijie Xiao,Hongtao Shi,Baiqin Zhou,Yongmei Wang,Huizhong Chi,Xiaohang Kou,Nanqi Ren
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (19): 14048-14058 被引量:109
标识
DOI:10.1021/acs.est.2c04172
摘要

Current research has widely applied heteroatom doping for the promotion of catalyst activity in peroxymonosulfate (PMS) systems; however, the relationship between heteroatom doping and stimulated activation mechanism transformation is not fully understood. Herein, we introduce nitrogen and sulfur doping into a Co@rGO material for PMS activation to degrade tetracycline (TC) and systematically investigate how heteroatom doping transformed the activation mechanism of the original Co@rGO/PMS system. N was homogeneously inserted into the reduced graphene oxide (rGO) matrix of Co@rGO, inducing a significant increase in the degradation efficiency without affecting the activation mechanism transformation. Additionally, S doping converted Co3O4 to Co4S3 in Co@rGO and transformed the cooperative oxidation pathway into a single non-radical pathway with stronger intensity, which led to a higher stability against environmental interferences. Notably, based on density functional theory (DFT) calculations, we demonstrated that Co4S3 had a higher energy barrier for PMS adsorption and cleavage than Co3O4, and therefore, the radical pathway was not easily stimulated by Co4S3. Overall, this study not only illustrated the improvement due to the heteroatom doping of Co@rGO for TC degradation in a PMS system but also bridged the knowledge gap between the catalyst structure and degradation performance through activation mechanism transformation drawn from theoretical and experimental analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助学习ing采纳,获得10
刚刚
1秒前
1秒前
西木发布了新的文献求助10
6秒前
lucygaga完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
花花完成签到 ,获得积分20
8秒前
甜美傲蕾完成签到,获得积分10
9秒前
11秒前
Jasper应助花海采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助50
19秒前
落落完成签到,获得积分10
20秒前
西木完成签到,获得积分10
23秒前
27秒前
左丘芷卉完成签到,获得积分10
27秒前
27秒前
29秒前
瘦瘦的果汁完成签到,获得积分10
30秒前
愚者完成签到,获得积分10
32秒前
傻傻的飞丹完成签到 ,获得积分10
33秒前
小二郎应助Dreamhappy采纳,获得10
34秒前
37秒前
量子星尘发布了新的文献求助30
37秒前
和谐的醉山完成签到,获得积分0
39秒前
我们仨完成签到 ,获得积分10
41秒前
徐畅完成签到 ,获得积分10
47秒前
晓风完成签到,获得积分10
49秒前
英姑应助科研通管家采纳,获得10
51秒前
充电宝应助科研通管家采纳,获得10
51秒前
zgrmws应助科研通管家采纳,获得10
52秒前
乐乐应助wujiwuhui采纳,获得10
52秒前
52秒前
52秒前
汉堡包应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
52秒前
52秒前
GingerF应助科研通管家采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796286
求助须知:如何正确求助?哪些是违规求助? 5775163
关于积分的说明 15491606
捐赠科研通 4923302
什么是DOI,文献DOI怎么找? 2650299
邀请新用户注册赠送积分活动 1597526
关于科研通互助平台的介绍 1552158