Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

生物 大数据 数据科学 基因组选择 计算机科学 基因型 数据挖掘 遗传学 基因 单核苷酸多态性
作者
Yunbi Xu,Xingping Zhang,Huihui Li,Hongjian Zheng,Jianan Zhang,Michael Olsen,Rajeev K. Varshney,B. M. Prasanna,Qian Qian
出处
期刊:Molecular Plant [Elsevier BV]
卷期号:15 (11): 1664-1695 被引量:114
标识
DOI:10.1016/j.molp.2022.09.001
摘要

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666999完成签到,获得积分10
刚刚
蒋磊完成签到 ,获得积分10
刚刚
mumuaidafu完成签到 ,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
yu完成签到,获得积分10
2秒前
gzmejiji完成签到 ,获得积分10
2秒前
13击完成签到,获得积分10
3秒前
hhl完成签到,获得积分10
3秒前
完美世界应助今天他采纳,获得10
4秒前
5秒前
kangkang发布了新的文献求助30
5秒前
学习学习学习完成签到,获得积分10
5秒前
冰阔罗发布了新的文献求助10
6秒前
6秒前
6秒前
高高的采蓝完成签到 ,获得积分20
8秒前
细嗅蔷薇完成签到,获得积分10
9秒前
laola发布了新的文献求助10
10秒前
晨曦完成签到 ,获得积分10
10秒前
11秒前
11秒前
苏桑焉完成签到 ,获得积分10
12秒前
积极废物完成签到 ,获得积分10
12秒前
犹豫战斗机完成签到,获得积分10
13秒前
Xin完成签到,获得积分10
13秒前
zoe完成签到,获得积分10
13秒前
专注的水壶完成签到 ,获得积分10
13秒前
糖糖科研顺利呀完成签到 ,获得积分10
14秒前
origin2017发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
专心搞科研完成签到 ,获得积分10
15秒前
CodeCraft应助百里烬言采纳,获得10
16秒前
Lucas应助冰阔罗采纳,获得10
17秒前
17秒前
18秒前
堀江真夏完成签到 ,获得积分10
19秒前
调皮蛋完成签到,获得积分10
20秒前
KX2024完成签到,获得积分10
21秒前
小石头完成签到,获得积分10
21秒前
leon完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365