清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

生物 大数据 数据科学 基因组选择 计算机科学 基因型 数据挖掘 遗传学 基因 单核苷酸多态性
作者
Yunbi Xu,Xingping Zhang,Huihui Li,Hongjian Zheng,Jianan Zhang,Michael Olsen,Rajeev K. Varshney,B. M. Prasanna,Qian Qian
出处
期刊:Molecular Plant [Elsevier]
卷期号:15 (11): 1664-1695 被引量:246
标识
DOI:10.1016/j.molp.2022.09.001
摘要

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
顾灵毓发布了新的文献求助10
7秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
李健应助顾灵毓采纳,获得10
17秒前
29秒前
40秒前
45秒前
顾灵毓发布了新的文献求助10
48秒前
55秒前
HJJ完成签到 ,获得积分10
56秒前
1分钟前
顾灵毓完成签到,获得积分10
1分钟前
tt完成签到,获得积分10
1分钟前
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
1分钟前
ZYP发布了新的文献求助10
1分钟前
1分钟前
doublenine18完成签到,获得积分10
1分钟前
科研通AI6应助doublenine18采纳,获得10
1分钟前
2分钟前
无极微光应助科研通管家采纳,获得20
2分钟前
2分钟前
慕青应助Xiu采纳,获得10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
3分钟前
Xiu发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Xiu完成签到,获得积分10
3分钟前
3分钟前
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
笑傲完成签到,获得积分10
4分钟前
曦耀发布了新的文献求助10
4分钟前
微卫星不稳定完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591