Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

生物 大数据 数据科学 基因组选择 计算机科学 基因型 数据挖掘 遗传学 基因 单核苷酸多态性
作者
Yunbi Xu,Xingping Zhang,Huihui Li,Hongjian Zheng,Jianan Zhang,Michael Olsen,Rajeev K. Varshney,B. M. Prasanna,Qian Qian
出处
期刊:Molecular Plant [Elsevier]
卷期号:15 (11): 1664-1695 被引量:114
标识
DOI:10.1016/j.molp.2022.09.001
摘要

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Zhaorf采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
peikyang发布了新的文献求助10
1秒前
藤原拓海完成签到,获得积分10
1秒前
π1完成签到 ,获得积分10
1秒前
zhangqi发布了新的文献求助10
1秒前
CCL应助wjj采纳,获得20
2秒前
2秒前
单于天宇完成签到,获得积分10
2秒前
2秒前
畅快的南风完成签到,获得积分10
3秒前
猪猪hero完成签到,获得积分10
3秒前
要减肥冰菱完成签到,获得积分10
3秒前
肖静茹完成签到,获得积分20
3秒前
情怀应助啾啾咪咪采纳,获得10
4秒前
奥里给完成签到 ,获得积分10
4秒前
DQ8733完成签到,获得积分10
4秒前
AAAAAAAAAAA发布了新的文献求助10
5秒前
5秒前
鱼与树发布了新的文献求助10
5秒前
sun完成签到,获得积分20
5秒前
lbw完成签到 ,获得积分10
6秒前
领导范儿应助朴素篮球采纳,获得10
6秒前
小刘不笨发布了新的文献求助10
6秒前
6秒前
大方的雪曼完成签到,获得积分10
6秒前
詭詐应助西洲采纳,获得10
6秒前
7秒前
zhangting发布了新的文献求助10
7秒前
玉9989完成签到,获得积分20
7秒前
大方小白发布了新的文献求助10
7秒前
xiaowang完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
轩辕德地发布了新的文献求助10
8秒前
FashionBoy应助chinning采纳,获得10
8秒前
shaohua2011完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678