Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

生物 大数据 数据科学 基因组选择 计算机科学 基因型 数据挖掘 遗传学 基因 单核苷酸多态性
作者
Yunbi Xu,Xingping Zhang,Huihui Li,Hongjian Zheng,Jianan Zhang,Michael Olsen,Rajeev K. Varshney,B. M. Prasanna,Qian Qian
出处
期刊:Molecular Plant [Elsevier]
卷期号:15 (11): 1664-1695 被引量:246
标识
DOI:10.1016/j.molp.2022.09.001
摘要

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YaRu应助倒头睡不醒采纳,获得10
1秒前
FashionBoy应助小丸子采纳,获得10
1秒前
nn发布了新的文献求助100
1秒前
1秒前
雪笙完成签到 ,获得积分10
1秒前
孙雍博发布了新的文献求助10
2秒前
2秒前
云溪完成签到,获得积分10
2秒前
2秒前
林夕完成签到,获得积分10
3秒前
大力沛萍发布了新的文献求助10
3秒前
Akim应助zhuxi采纳,获得10
3秒前
3秒前
大模型应助玖锱采纳,获得10
4秒前
香蕉凌蝶完成签到,获得积分10
4秒前
BowieHuang应助shusen采纳,获得10
4秒前
4秒前
现在拨打发布了新的文献求助10
4秒前
finemaker完成签到,获得积分10
4秒前
AD应助cdragon采纳,获得10
4秒前
4秒前
Jasper应助小胖鱼采纳,获得10
4秒前
草莓奶冻完成签到,获得积分10
5秒前
5秒前
科研通AI6应助Radarax采纳,获得10
6秒前
顺利秋灵完成签到,获得积分10
6秒前
科研发布了新的文献求助10
6秒前
无极微光应助欣喜紫真采纳,获得20
6秒前
zhou完成签到,获得积分10
6秒前
7秒前
怡然的幻灵完成签到,获得积分10
8秒前
孙尼美完成签到,获得积分10
8秒前
lin完成签到,获得积分10
8秒前
9秒前
顾矜应助派大星采纳,获得10
9秒前
wonderwander发布了新的文献求助10
10秒前
梦梦完成签到,获得积分20
10秒前
10秒前
高贵煜祺发布了新的文献求助10
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066