Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

生物 大数据 数据科学 基因组选择 计算机科学 基因型 数据挖掘 遗传学 基因 单核苷酸多态性
作者
Yunbi Xu,Xingping Zhang,Huihui Li,Hongjian Zheng,Jianan Zhang,Michael Olsen,Rajeev K. Varshney,B. M. Prasanna,Qian Qian
出处
期刊:Molecular Plant [Elsevier]
卷期号:15 (11): 1664-1695 被引量:246
标识
DOI:10.1016/j.molp.2022.09.001
摘要

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8o5V2n发布了新的文献求助10
刚刚
QJZ完成签到 ,获得积分10
刚刚
溜溜梅发布了新的文献求助10
刚刚
球球完成签到,获得积分10
1秒前
LEETHEO发布了新的文献求助10
1秒前
1秒前
1秒前
彭于晏应助75986686采纳,获得10
1秒前
2秒前
领导范儿应助WGS采纳,获得10
2秒前
2秒前
Jian完成签到 ,获得积分10
3秒前
hh完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助Mojito采纳,获得10
5秒前
5秒前
6秒前
多情山蝶发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
wsy完成签到,获得积分10
8秒前
今夜明珠色应助Liu采纳,获得30
8秒前
乐尤琉完成签到,获得积分10
9秒前
9秒前
小蘑菇应助党阳阳采纳,获得10
9秒前
10秒前
10秒前
10秒前
史克珍香完成签到 ,获得积分10
11秒前
AIDA完成签到,获得积分10
11秒前
斯文败类应助Guzaiya采纳,获得10
12秒前
gavin完成签到 ,获得积分10
13秒前
飞快的从彤完成签到 ,获得积分20
13秒前
茶米发布了新的文献求助10
14秒前
脱羰甲酸发布了新的文献求助10
15秒前
hhdegf发布了新的文献求助10
17秒前
17秒前
科目三应助ldp采纳,获得10
18秒前
研友_8o5V2n完成签到,获得积分10
19秒前
溜溜梅完成签到,获得积分10
19秒前
花生小铺主人完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594