Diffusion‐Weighted Magnetic Resonance Imaging and Morphological Characteristics Evaluation for Outcome Prediction of Primary Debulking Surgery for Advanced High‐Grade Serous Ovarian Carcinoma

医学 揭穿 传统PCI 接收机工作特性 磁共振成像 放射科 浆液性液体 腹水 磁共振弥散成像 卵巢癌 核医学 癌症 内科学 心肌梗塞
作者
Haiming Li,Jing Lu,Linhong Deng,Qinhao Guo,Zijing Lin,Shuhui Zhao,Huijuan Ge,Jinwei Qiang,Yajia Gu,Zaiyi Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (5): 1340-1349 被引量:5
标识
DOI:10.1002/jmri.28418
摘要

Background Preoperative assessment of whether a successful primary debulking surgery (PDS) can be performed in patients with advanced high‐grade serous ovarian carcinoma (HGSOC) remains a challenge. A reliable model to precisely predict resectability is highly demanded. Purpose To investigate the value of diffusion‐weighted MRI (DW‐MRI) combined with morphological characteristics to predict the PDS outcome in advanced HGSOC patients. Study Type Prospective. Subjects A total of 95 consecutive patients with histopathologically confirmed advanced HGSOC (ranged from 39 to 77 years). Fields Strength/Sequence A 3.0 T, readout‐segmented echo‐planar DWI . Assessment The MRI morphological characteristics of the primary ovarian tumor, a peritoneal carcinomatosis index (PCI) derived from DWI (DWI‐PCI) and histogram analysis of the primary ovarian tumor and the largest peritoneal carcinomatosis were assessed by three radiologists. Three different models were developed to predict the resectability, including a clinicoradiologic model combing MRI morphological characteristic with ascites and CA125 level; DWI‐PCI alone; and a fusion model combining the clinical‐morphological information and DWI‐PCI. Statistical Tests Multivariate logistic regression analyses, receiver operating characteristic (ROC) curve, net reclassification index (NRI) and integrated discrimination improvement (IDI) were used. A P < 0.05 was considered to be statistically significant. Results Sixty‐seven cases appeared as a definite mass, whereas 28 cases as an infiltrative mass. The morphological characteristics and DWI‐PCI were independent factors for predicting the resectability, with an AUC of 0.724 and 0.824, respectively. The multivariable predictive model consisted of morphological characteristics, CA‐125, and the amount of ascites, with an incremental AUC of 0.818. Combining the application of a clinicoradiologic model and DWI‐PCI showed significantly higher AUC of 0.863 than the ones of each of them implemented alone, with a positive NRI and IDI. Data Conclusions The combination of two clinical factors, MRI morphological characteristics and DWI‐PCI provide a reliable and valuable paradigm for the noninvasive prediction of the outcome of PDS. Evidence Level 2 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aikey完成签到 ,获得积分10
刚刚
刚刚
刚刚
大方的八宝粥完成签到,获得积分10
2秒前
3秒前
gez完成签到,获得积分10
3秒前
Zzz发布了新的文献求助10
4秒前
4秒前
suchui发布了新的文献求助10
5秒前
6秒前
6秒前
sunny66cai完成签到,获得积分10
7秒前
科研通AI2S应助ladder采纳,获得10
7秒前
共享精神应助Zzz采纳,获得10
7秒前
8秒前
xhsz1111完成签到 ,获得积分10
10秒前
10秒前
10秒前
樱桃猴子完成签到,获得积分0
10秒前
TT发布了新的文献求助10
10秒前
11秒前
en发布了新的文献求助10
11秒前
12秒前
小卡发布了新的文献求助10
14秒前
我是125发布了新的文献求助10
15秒前
16秒前
shineedou发布了新的文献求助10
16秒前
shadow完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
wanci应助科研通管家采纳,获得20
18秒前
pcr163应助科研通管家采纳,获得150
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
19秒前
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000