Diffusion‐Weighted Magnetic Resonance Imaging and Morphological Characteristics Evaluation for Outcome Prediction of Primary Debulking Surgery for Advanced High‐Grade Serous Ovarian Carcinoma

医学 揭穿 传统PCI 接收机工作特性 磁共振成像 放射科 浆液性液体 腹水 磁共振弥散成像 卵巢癌 核医学 癌症 内科学 心肌梗塞
作者
Haiming Li,Jing Lu,Linhong Deng,Qinhao Guo,Zijing Lin,Shuhui Zhao,Huijuan Ge,Jinwei Qiang,Yajia Gu,Zaiyi Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (5): 1340-1349 被引量:5
标识
DOI:10.1002/jmri.28418
摘要

Background Preoperative assessment of whether a successful primary debulking surgery (PDS) can be performed in patients with advanced high‐grade serous ovarian carcinoma (HGSOC) remains a challenge. A reliable model to precisely predict resectability is highly demanded. Purpose To investigate the value of diffusion‐weighted MRI (DW‐MRI) combined with morphological characteristics to predict the PDS outcome in advanced HGSOC patients. Study Type Prospective. Subjects A total of 95 consecutive patients with histopathologically confirmed advanced HGSOC (ranged from 39 to 77 years). Fields Strength/Sequence A 3.0 T, readout‐segmented echo‐planar DWI . Assessment The MRI morphological characteristics of the primary ovarian tumor, a peritoneal carcinomatosis index (PCI) derived from DWI (DWI‐PCI) and histogram analysis of the primary ovarian tumor and the largest peritoneal carcinomatosis were assessed by three radiologists. Three different models were developed to predict the resectability, including a clinicoradiologic model combing MRI morphological characteristic with ascites and CA125 level; DWI‐PCI alone; and a fusion model combining the clinical‐morphological information and DWI‐PCI. Statistical Tests Multivariate logistic regression analyses, receiver operating characteristic (ROC) curve, net reclassification index (NRI) and integrated discrimination improvement (IDI) were used. A P < 0.05 was considered to be statistically significant. Results Sixty‐seven cases appeared as a definite mass, whereas 28 cases as an infiltrative mass. The morphological characteristics and DWI‐PCI were independent factors for predicting the resectability, with an AUC of 0.724 and 0.824, respectively. The multivariable predictive model consisted of morphological characteristics, CA‐125, and the amount of ascites, with an incremental AUC of 0.818. Combining the application of a clinicoradiologic model and DWI‐PCI showed significantly higher AUC of 0.863 than the ones of each of them implemented alone, with a positive NRI and IDI. Data Conclusions The combination of two clinical factors, MRI morphological characteristics and DWI‐PCI provide a reliable and valuable paradigm for the noninvasive prediction of the outcome of PDS. Evidence Level 2 Technical Efficacy Stage 2

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LAN0528完成签到,获得积分10
1秒前
1秒前
2秒前
热心的血茗完成签到,获得积分10
2秒前
普通市民完成签到,获得积分10
2秒前
华仔应助快乐的医学生采纳,获得10
3秒前
4秒前
4秒前
逸风望发布了新的文献求助10
4秒前
5秒前
Epiphany_wts发布了新的文献求助10
5秒前
wdw2501发布了新的文献求助10
5秒前
西西发布了新的文献求助10
5秒前
斯文败类应助普通市民采纳,获得10
5秒前
rachelli完成签到,获得积分20
7秒前
焱焱不忘完成签到,获得积分0
7秒前
luodaxia发布了新的文献求助10
7秒前
我需要文献完成签到,获得积分10
7秒前
科研通AI6应助无心的可仁采纳,获得10
8秒前
张诗言发布了新的文献求助10
9秒前
皇甫弘文完成签到,获得积分10
9秒前
zhang发布了新的文献求助10
9秒前
雪白元风完成签到 ,获得积分10
9秒前
10秒前
10秒前
kk发布了新的文献求助30
10秒前
华仔应助淡定茉莉采纳,获得10
10秒前
11秒前
flylmy2008完成签到,获得积分10
11秒前
www发布了新的文献求助10
11秒前
ji发布了新的文献求助10
11秒前
123应助欧皇采纳,获得10
12秒前
雪白的冰蓝完成签到,获得积分10
12秒前
Jun完成签到,获得积分20
12秒前
12秒前
友好的匪完成签到,获得积分10
14秒前
LHH发布了新的文献求助10
15秒前
阔达宝莹发布了新的文献求助10
15秒前
halalalaa发布了新的文献求助10
16秒前
细腻的仙人掌给yar的求助进行了留言
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513