Multistep short-term wind speed forecasting using transformer

风速 风力发电 编码器 计算机科学 变压器 均方误差 网格 希尔伯特-黄变换 加速 风电预测 控制理论(社会学) 算法 电力系统 功率(物理) 工程类 人工智能 气象学 数学 电气工程 电压 统计 电信 操作系统 白噪声 物理 量子力学 控制(管理) 几何学
作者
Huijuan Wu,Keqilao Meng,Daoerji Fan,Zhanqiang Zhang,Qing Liu
出处
期刊:Energy [Elsevier BV]
卷期号:261: 125231-125231 被引量:66
标识
DOI:10.1016/j.energy.2022.125231
摘要

Wind power can effectively alleviate the energy crisis. However, its integration into the grid affects power quality and power grid stability. Accurate wind speed prediction is a key factor in the efficient use of wind power. Because of its intermittent and nonstationary nature, wind speed forecasting is difficult, and is the topic of much research, especially long-time multistep forecasts. In this paper, the multistep wind speed prediction problem is regarded as a sequence-to-sequence mapping problem, and a multistep wind speed prediction model based on a transformer is proposed. This model is based on an encoder–decoder architecture, where the encoder generates representations of historical wind speed sequences of any length, the decoder generates arbitrarily long future wind speed sequences, and the encoder and decoder are associated by an attention mechanism. At the same time, the encoder and decoder of Transformer are completely based on a multi-head attention mechanism. For easy modeling, a 1-dimensional original wind speed sequence is transformed to a 16-dimensional sequence by ensemble empirical mode decomposition (EEMD), and the multidimensional wind speed data are directly modeled with Transformer. We trained the model with very large-scale (19 years of data) wind speed data averaged at 10-minute intervals, and performed the evaluation over one-year wind speed data. Results show that our one-step forecast model achieved an average mean absolute error (MAE) and root mean square error (RMSE) of 0.167 and 0.221, respectively. To the best of our knowledge, our 3-, 6-, 12-, and 24-hour multistep forecast model achieves a new state of the art in wind speed forecasting, with respective MAEs of 0.243, 0.290, 0.362, and 0.453, and RMSEs of 0.326, 0.401, 0.513, and 0.651. It is believed that performance can be further improved with better model parameter optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想毕业完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
领导范儿应助dbl采纳,获得10
2秒前
2秒前
George完成签到,获得积分10
3秒前
所所应助tagate采纳,获得10
5秒前
Bo0108完成签到,获得积分10
5秒前
5秒前
月神满月完成签到,获得积分10
6秒前
gej发布了新的文献求助10
8秒前
kiki完成签到,获得积分20
8秒前
9秒前
司空豁发布了新的文献求助30
9秒前
宰宰小熊发布了新的文献求助10
9秒前
9秒前
10秒前
Rain发布了新的文献求助10
11秒前
11秒前
12秒前
kiki发布了新的文献求助10
13秒前
xyx发布了新的文献求助10
14秒前
ding应助Duxian采纳,获得10
15秒前
15秒前
16秒前
老王发布了新的文献求助10
16秒前
可爱的函函应助Rain采纳,获得10
16秒前
852应助害怕的板凳采纳,获得10
17秒前
17秒前
彩色青雪发布了新的文献求助20
17秒前
18秒前
19秒前
思维隋发布了新的文献求助30
19秒前
丘比特应助LAIJINSHENG采纳,获得10
20秒前
英姑应助ZHANG采纳,获得10
20秒前
20秒前
chel发布了新的文献求助30
21秒前
木子26年要毕业完成签到 ,获得积分10
22秒前
tagate发布了新的文献求助10
22秒前
56jhjl完成签到,获得积分10
22秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160