Multistep short-term wind speed forecasting using transformer

风速 风力发电 编码器 计算机科学 变压器 均方误差 网格 希尔伯特-黄变换 加速 风电预测 控制理论(社会学) 算法 电力系统 功率(物理) 工程类 人工智能 气象学 数学 电气工程 电压 统计 电信 操作系统 白噪声 物理 量子力学 控制(管理) 几何学
作者
Huijuan Wu,Keqilao Meng,Daoerji Fan,Zhanqiang Zhang,Qing Liu
出处
期刊:Energy [Elsevier]
卷期号:261: 125231-125231 被引量:66
标识
DOI:10.1016/j.energy.2022.125231
摘要

Wind power can effectively alleviate the energy crisis. However, its integration into the grid affects power quality and power grid stability. Accurate wind speed prediction is a key factor in the efficient use of wind power. Because of its intermittent and nonstationary nature, wind speed forecasting is difficult, and is the topic of much research, especially long-time multistep forecasts. In this paper, the multistep wind speed prediction problem is regarded as a sequence-to-sequence mapping problem, and a multistep wind speed prediction model based on a transformer is proposed. This model is based on an encoder–decoder architecture, where the encoder generates representations of historical wind speed sequences of any length, the decoder generates arbitrarily long future wind speed sequences, and the encoder and decoder are associated by an attention mechanism. At the same time, the encoder and decoder of Transformer are completely based on a multi-head attention mechanism. For easy modeling, a 1-dimensional original wind speed sequence is transformed to a 16-dimensional sequence by ensemble empirical mode decomposition (EEMD), and the multidimensional wind speed data are directly modeled with Transformer. We trained the model with very large-scale (19 years of data) wind speed data averaged at 10-minute intervals, and performed the evaluation over one-year wind speed data. Results show that our one-step forecast model achieved an average mean absolute error (MAE) and root mean square error (RMSE) of 0.167 and 0.221, respectively. To the best of our knowledge, our 3-, 6-, 12-, and 24-hour multistep forecast model achieves a new state of the art in wind speed forecasting, with respective MAEs of 0.243, 0.290, 0.362, and 0.453, and RMSEs of 0.326, 0.401, 0.513, and 0.651. It is believed that performance can be further improved with better model parameter optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Georges-09发布了新的文献求助10
4秒前
春江发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
JG完成签到 ,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得20
9秒前
orixero应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
拉长的博超完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
12秒前
爆米花应助春江采纳,获得10
13秒前
在水一方应助treelet007采纳,获得10
13秒前
13秒前
13秒前
xuxingxing发布了新的文献求助10
14秒前
14秒前
15秒前
庄艺斌完成签到,获得积分10
15秒前
15秒前
16秒前
传奇3应助微光熠采纳,获得10
16秒前
聪明邪欢完成签到,获得积分10
17秒前
科目三应助misaka采纳,获得10
18秒前
18秒前
神音发布了新的文献求助10
18秒前
左西发布了新的文献求助10
18秒前
吴彦祖发布了新的文献求助10
19秒前
瞌睡虫发布了新的文献求助10
20秒前
烟花应助一一采纳,获得30
20秒前
21秒前
xxfsx应助zhe采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431238
求助须知:如何正确求助?哪些是违规求助? 4544308
关于积分的说明 14191949
捐赠科研通 4463001
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414720