Multistep short-term wind speed forecasting using transformer

风速 风力发电 编码器 计算机科学 变压器 均方误差 网格 希尔伯特-黄变换 加速 风电预测 控制理论(社会学) 算法 电力系统 功率(物理) 工程类 人工智能 气象学 数学 电气工程 电压 统计 电信 操作系统 白噪声 物理 量子力学 控制(管理) 几何学
作者
Huijuan Wu,Keqilao Meng,Daoerji Fan,Zhanqiang Zhang,Qing Liu
出处
期刊:Energy [Elsevier]
卷期号:261: 125231-125231 被引量:66
标识
DOI:10.1016/j.energy.2022.125231
摘要

Wind power can effectively alleviate the energy crisis. However, its integration into the grid affects power quality and power grid stability. Accurate wind speed prediction is a key factor in the efficient use of wind power. Because of its intermittent and nonstationary nature, wind speed forecasting is difficult, and is the topic of much research, especially long-time multistep forecasts. In this paper, the multistep wind speed prediction problem is regarded as a sequence-to-sequence mapping problem, and a multistep wind speed prediction model based on a transformer is proposed. This model is based on an encoder–decoder architecture, where the encoder generates representations of historical wind speed sequences of any length, the decoder generates arbitrarily long future wind speed sequences, and the encoder and decoder are associated by an attention mechanism. At the same time, the encoder and decoder of Transformer are completely based on a multi-head attention mechanism. For easy modeling, a 1-dimensional original wind speed sequence is transformed to a 16-dimensional sequence by ensemble empirical mode decomposition (EEMD), and the multidimensional wind speed data are directly modeled with Transformer. We trained the model with very large-scale (19 years of data) wind speed data averaged at 10-minute intervals, and performed the evaluation over one-year wind speed data. Results show that our one-step forecast model achieved an average mean absolute error (MAE) and root mean square error (RMSE) of 0.167 and 0.221, respectively. To the best of our knowledge, our 3-, 6-, 12-, and 24-hour multistep forecast model achieves a new state of the art in wind speed forecasting, with respective MAEs of 0.243, 0.290, 0.362, and 0.453, and RMSEs of 0.326, 0.401, 0.513, and 0.651. It is believed that performance can be further improved with better model parameter optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小严完成签到 ,获得积分10
刚刚
芋圆脑袋完成签到,获得积分10
1秒前
1秒前
执着羊完成签到,获得积分10
2秒前
3秒前
3秒前
卷心菜发布了新的文献求助10
3秒前
Owen应助花开四海采纳,获得10
3秒前
花开富贵完成签到,获得积分10
4秒前
GUGU完成签到,获得积分20
4秒前
普萘洛尔完成签到,获得积分10
5秒前
7秒前
攸攸完成签到,获得积分10
7秒前
8秒前
寒冷幼丝发布了新的文献求助10
8秒前
volvoamg发布了新的文献求助10
10秒前
小瓦片发布了新的文献求助10
11秒前
11秒前
Uchiha完成签到,获得积分10
11秒前
小二郎应助HZSY_WL采纳,获得10
11秒前
清宁发布了新的文献求助10
12秒前
乐乐应助我是猪采纳,获得10
13秒前
张鑫鑫完成签到,获得积分10
14秒前
Ling发布了新的文献求助20
14秒前
16秒前
17秒前
张鑫鑫发布了新的文献求助10
17秒前
科研通AI2S应助顺利的从雪采纳,获得10
17秒前
WUYANG完成签到,获得积分10
18秒前
不懈奋进应助Tricia采纳,获得30
19秒前
年华发布了新的文献求助10
21秒前
21秒前
min发布了新的文献求助10
22秒前
22秒前
22秒前
万能图书馆应助清宁采纳,获得30
23秒前
龘龘完成签到,获得积分10
24秒前
25秒前
情怀应助寒冷幼丝采纳,获得10
26秒前
我是猪发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076615
求助须知:如何正确求助?哪些是违规求助? 2729583
关于积分的说明 7509104
捐赠科研通 2377778
什么是DOI,文献DOI怎么找? 1260780
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203