Multistep short-term wind speed forecasting using transformer

风速 风力发电 编码器 计算机科学 变压器 均方误差 网格 希尔伯特-黄变换 加速 风电预测 控制理论(社会学) 算法 电力系统 功率(物理) 工程类 人工智能 气象学 数学 电气工程 电压 统计 电信 操作系统 白噪声 物理 量子力学 控制(管理) 几何学
作者
Huijuan Wu,Keqilao Meng,Daoerji Fan,Zhanqiang Zhang,Qing Liu
出处
期刊:Energy [Elsevier]
卷期号:261: 125231-125231 被引量:66
标识
DOI:10.1016/j.energy.2022.125231
摘要

Wind power can effectively alleviate the energy crisis. However, its integration into the grid affects power quality and power grid stability. Accurate wind speed prediction is a key factor in the efficient use of wind power. Because of its intermittent and nonstationary nature, wind speed forecasting is difficult, and is the topic of much research, especially long-time multistep forecasts. In this paper, the multistep wind speed prediction problem is regarded as a sequence-to-sequence mapping problem, and a multistep wind speed prediction model based on a transformer is proposed. This model is based on an encoder–decoder architecture, where the encoder generates representations of historical wind speed sequences of any length, the decoder generates arbitrarily long future wind speed sequences, and the encoder and decoder are associated by an attention mechanism. At the same time, the encoder and decoder of Transformer are completely based on a multi-head attention mechanism. For easy modeling, a 1-dimensional original wind speed sequence is transformed to a 16-dimensional sequence by ensemble empirical mode decomposition (EEMD), and the multidimensional wind speed data are directly modeled with Transformer. We trained the model with very large-scale (19 years of data) wind speed data averaged at 10-minute intervals, and performed the evaluation over one-year wind speed data. Results show that our one-step forecast model achieved an average mean absolute error (MAE) and root mean square error (RMSE) of 0.167 and 0.221, respectively. To the best of our knowledge, our 3-, 6-, 12-, and 24-hour multistep forecast model achieves a new state of the art in wind speed forecasting, with respective MAEs of 0.243, 0.290, 0.362, and 0.453, and RMSEs of 0.326, 0.401, 0.513, and 0.651. It is believed that performance can be further improved with better model parameter optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KYTYYDS发布了新的文献求助10
2秒前
HanluMa完成签到 ,获得积分10
2秒前
fzh完成签到,获得积分10
6秒前
Jenny完成签到,获得积分10
8秒前
伟立完成签到,获得积分10
8秒前
15秒前
16秒前
然12138完成签到 ,获得积分10
16秒前
香蕉觅云应助SnownS采纳,获得10
16秒前
川荣李奈完成签到 ,获得积分10
20秒前
xinbowey发布了新的文献求助10
20秒前
火星上向珊完成签到,获得积分10
23秒前
25秒前
柳条儿完成签到,获得积分10
25秒前
如意幻枫完成签到,获得积分10
29秒前
30秒前
30秒前
渔婆发布了新的文献求助10
31秒前
33秒前
风趣的泥猴桃完成签到 ,获得积分10
34秒前
34秒前
zgsjymysmyy发布了新的文献求助30
35秒前
fuchao完成签到,获得积分10
35秒前
牧谷发布了新的文献求助10
36秒前
好吃的火龙果完成签到 ,获得积分10
37秒前
天边发布了新的文献求助10
38秒前
东方越彬发布了新的文献求助10
39秒前
赘婿应助sunny采纳,获得10
39秒前
39秒前
39秒前
SnownS完成签到,获得积分10
40秒前
123123发布了新的文献求助10
44秒前
SnownS发布了新的文献求助10
45秒前
45秒前
45秒前
汉堡包应助天边采纳,获得10
47秒前
PengqianGuo完成签到,获得积分10
49秒前
echo发布了新的文献求助10
49秒前
bkagyin应助cancan采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566