Multistep short-term wind speed forecasting using transformer

风速 风力发电 编码器 计算机科学 变压器 均方误差 网格 希尔伯特-黄变换 加速 风电预测 控制理论(社会学) 算法 电力系统 功率(物理) 工程类 人工智能 气象学 数学 电气工程 电压 统计 电信 操作系统 白噪声 物理 量子力学 控制(管理) 几何学
作者
Huijuan Wu,Keqilao Meng,Daoerji Fan,Zhanqiang Zhang,Qing Liu
出处
期刊:Energy [Elsevier BV]
卷期号:261: 125231-125231 被引量:66
标识
DOI:10.1016/j.energy.2022.125231
摘要

Wind power can effectively alleviate the energy crisis. However, its integration into the grid affects power quality and power grid stability. Accurate wind speed prediction is a key factor in the efficient use of wind power. Because of its intermittent and nonstationary nature, wind speed forecasting is difficult, and is the topic of much research, especially long-time multistep forecasts. In this paper, the multistep wind speed prediction problem is regarded as a sequence-to-sequence mapping problem, and a multistep wind speed prediction model based on a transformer is proposed. This model is based on an encoder–decoder architecture, where the encoder generates representations of historical wind speed sequences of any length, the decoder generates arbitrarily long future wind speed sequences, and the encoder and decoder are associated by an attention mechanism. At the same time, the encoder and decoder of Transformer are completely based on a multi-head attention mechanism. For easy modeling, a 1-dimensional original wind speed sequence is transformed to a 16-dimensional sequence by ensemble empirical mode decomposition (EEMD), and the multidimensional wind speed data are directly modeled with Transformer. We trained the model with very large-scale (19 years of data) wind speed data averaged at 10-minute intervals, and performed the evaluation over one-year wind speed data. Results show that our one-step forecast model achieved an average mean absolute error (MAE) and root mean square error (RMSE) of 0.167 and 0.221, respectively. To the best of our knowledge, our 3-, 6-, 12-, and 24-hour multistep forecast model achieves a new state of the art in wind speed forecasting, with respective MAEs of 0.243, 0.290, 0.362, and 0.453, and RMSEs of 0.326, 0.401, 0.513, and 0.651. It is believed that performance can be further improved with better model parameter optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kg关闭了kg文献求助
刚刚
1秒前
科研通AI6应助细心飞薇采纳,获得10
2秒前
云为晓发布了新的文献求助10
3秒前
3秒前
王博士发布了新的文献求助10
3秒前
大个应助net80yhm采纳,获得10
4秒前
羊小毛发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
Matt发布了新的文献求助10
5秒前
碧蓝世立发布了新的文献求助10
6秒前
du30发布了新的文献求助10
6秒前
hql完成签到 ,获得积分10
8秒前
忧郁的水仙花完成签到,获得积分10
8秒前
非凡梦发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
jiaojiao发布了新的文献求助10
11秒前
11秒前
黄黄发布了新的文献求助30
11秒前
Kecrin完成签到,获得积分10
11秒前
科研通AI2S应助Matt采纳,获得10
12秒前
沉静镜子发布了新的文献求助10
12秒前
大个应助云为晓采纳,获得10
13秒前
笨笨的完成签到,获得积分10
13秒前
s180500428发布了新的文献求助10
15秒前
qianZhang发布了新的文献求助10
15秒前
16秒前
16秒前
yy完成签到,获得积分10
16秒前
kiki0808完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
科研通AI6应助慕洋采纳,获得10
18秒前
张先生2365完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907