亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

涡扇发动机 计算机科学 预言 人工神经网络 深度学习 停工期 可靠性(半导体) 人工智能 降维 数据建模 事后诸葛亮 机器学习 可靠性工程 数据挖掘 工程类 汽车工程 功率(物理) 物理 量子力学 数据库 操作系统 心理学 认知心理学
作者
Owais Asif,Sajjad Haider,Syed Rameez Naqvi,John Zaki,Kyung Sup Kwak,S. M. Riazul Islam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 95425-95440 被引量:26
标识
DOI:10.1109/access.2022.3203406
摘要

In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of interest among the researchers. There exist various deep learning-based techniques which have been used for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory (LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine degradation dataset released by NASA is used to validate the performance of the proposed model. One important factor in RUL predictions is to determine the starting point of the engine degradation. This work proposes an improved piecewise linear degradation model to determine the starting point of deterioration and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose only those sensors measurement which have a monotonous behavior with RUL, which is then filtered through a moving median filter. The updated RUL labels from the degradation model together with the pre-processed data are used to train a deep LSTM network. The deep neural network when combined with dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in their experimental work. It is concluded that our model yields improvement in RUL prediction and attains minimum root mean squared error and score function values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜兜完成签到,获得积分10
刚刚
爆米花应助勤劳的盼芙采纳,获得10
1秒前
怂怂鼠完成签到,获得积分10
2秒前
JamesPei应助pay采纳,获得10
2秒前
8秒前
13秒前
大树发布了新的文献求助10
13秒前
洋洋完成签到 ,获得积分10
17秒前
默默善愁发布了新的文献求助10
19秒前
21秒前
27秒前
伊力扎提发布了新的文献求助20
28秒前
28秒前
怜寒完成签到 ,获得积分10
28秒前
鲜于灵竹完成签到,获得积分10
30秒前
pay发布了新的文献求助10
33秒前
Guts发布了新的文献求助10
34秒前
Accelerator完成签到,获得积分10
35秒前
伊力扎提完成签到,获得积分10
44秒前
47秒前
磊少完成签到,获得积分10
48秒前
思源应助Guts采纳,获得50
49秒前
归尘发布了新的文献求助10
53秒前
千早爱音完成签到 ,获得积分10
56秒前
XuNan完成签到,获得积分10
56秒前
Lucas应助材料生采纳,获得10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
1分钟前
orixero应助pay采纳,获得10
1分钟前
桐桐应助飞鞚采纳,获得10
1分钟前
kento发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助cxin采纳,获得10
1分钟前
Ming应助TRNA采纳,获得10
1分钟前
材料生发布了新的文献求助10
1分钟前
1分钟前
隐形的幻梅完成签到,获得积分10
1分钟前
ll发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564