A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

涡扇发动机 计算机科学 预言 人工神经网络 深度学习 停工期 可靠性(半导体) 人工智能 降维 数据建模 事后诸葛亮 机器学习 可靠性工程 数据挖掘 工程类 汽车工程 功率(物理) 物理 量子力学 数据库 操作系统 心理学 认知心理学
作者
Owais Asif,Sajjad Haider,Syed Rameez Naqvi,John Zaki,Kyung Sup Kwak,S. M. Riazul Islam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 95425-95440 被引量:26
标识
DOI:10.1109/access.2022.3203406
摘要

In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of interest among the researchers. There exist various deep learning-based techniques which have been used for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory (LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine degradation dataset released by NASA is used to validate the performance of the proposed model. One important factor in RUL predictions is to determine the starting point of the engine degradation. This work proposes an improved piecewise linear degradation model to determine the starting point of deterioration and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose only those sensors measurement which have a monotonous behavior with RUL, which is then filtered through a moving median filter. The updated RUL labels from the degradation model together with the pre-processed data are used to train a deep LSTM network. The deep neural network when combined with dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in their experimental work. It is concluded that our model yields improvement in RUL prediction and attains minimum root mean squared error and score function values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的小刺猬完成签到 ,获得积分10
刚刚
xiaofan完成签到,获得积分20
1秒前
锂离子发布了新的文献求助10
2秒前
王jh完成签到 ,获得积分10
3秒前
ZeKaWa应助Vintoe采纳,获得10
3秒前
fighting发布了新的文献求助10
4秒前
刘岩完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
猪猪hero应助wuxunxun2015采纳,获得10
5秒前
6秒前
GLv完成签到,获得积分10
7秒前
8秒前
嫁接诺贝尔应助自然醒采纳,获得10
8秒前
8秒前
森森发布了新的文献求助10
9秒前
冬天发布了新的文献求助10
9秒前
刘岩发布了新的文献求助10
9秒前
科研的神发布了新的文献求助10
9秒前
华仔应助养乐多敬你采纳,获得10
9秒前
猪猪hero应助养乐多敬你采纳,获得10
9秒前
科研通AI2S应助养乐多敬你采纳,获得10
9秒前
9秒前
10秒前
无花果应助正直的西牛采纳,获得10
11秒前
11秒前
12秒前
12秒前
zsl完成签到,获得积分10
12秒前
hh发布了新的文献求助10
12秒前
啵啵完成签到,获得积分20
12秒前
瘦瘦发布了新的文献求助10
12秒前
12秒前
酷波er应助Carl采纳,获得10
13秒前
付研琪发布了新的文献求助10
13秒前
yang发布了新的文献求助10
14秒前
ML发布了新的文献求助10
14秒前
wxj发布了新的文献求助10
14秒前
echo完成签到 ,获得积分10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592