A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

涡扇发动机 计算机科学 预言 人工神经网络 深度学习 停工期 可靠性(半导体) 人工智能 降维 数据建模 事后诸葛亮 机器学习 可靠性工程 数据挖掘 工程类 汽车工程 功率(物理) 物理 量子力学 数据库 操作系统 心理学 认知心理学
作者
Owais Asif,Sajjad Haider,Syed Rameez Naqvi,John Zaki,Kyung Sup Kwak,S. M. Riazul Islam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 95425-95440 被引量:26
标识
DOI:10.1109/access.2022.3203406
摘要

In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of interest among the researchers. There exist various deep learning-based techniques which have been used for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory (LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine degradation dataset released by NASA is used to validate the performance of the proposed model. One important factor in RUL predictions is to determine the starting point of the engine degradation. This work proposes an improved piecewise linear degradation model to determine the starting point of deterioration and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose only those sensors measurement which have a monotonous behavior with RUL, which is then filtered through a moving median filter. The updated RUL labels from the degradation model together with the pre-processed data are used to train a deep LSTM network. The deep neural network when combined with dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in their experimental work. It is concluded that our model yields improvement in RUL prediction and attains minimum root mean squared error and score function values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
3秒前
能干的问晴完成签到,获得积分10
4秒前
4秒前
这道题没有解完成签到,获得积分10
5秒前
木鱼浪花发布了新的文献求助10
5秒前
6秒前
6秒前
linlang完成签到,获得积分20
6秒前
1403912262完成签到,获得积分10
6秒前
Frain发布了新的文献求助10
7秒前
沉静弘文完成签到,获得积分10
7秒前
8秒前
所以是雪梨完成签到,获得积分10
9秒前
科研完成签到,获得积分10
9秒前
xio发布了新的文献求助10
10秒前
科研通AI6应助端端采纳,获得30
10秒前
wanci应助青柠味薯片采纳,获得10
10秒前
小邾完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
Dali应助wise111采纳,获得10
11秒前
大方雁露发布了新的文献求助20
11秒前
11秒前
汉堡包应助怡然羊采纳,获得10
12秒前
丰富如南完成签到,获得积分10
13秒前
春和景明完成签到,获得积分10
13秒前
凡人烦事发布了新的文献求助10
13秒前
清秀龙猫完成签到,获得积分10
14秒前
14秒前
15秒前
完美世界应助粗心的智慧采纳,获得10
15秒前
16秒前
17秒前
小透明发布了新的文献求助10
17秒前
ytc发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646