亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

涡扇发动机 计算机科学 预言 人工神经网络 深度学习 停工期 可靠性(半导体) 人工智能 降维 数据建模 事后诸葛亮 机器学习 可靠性工程 数据挖掘 工程类 汽车工程 功率(物理) 物理 量子力学 数据库 操作系统 心理学 认知心理学
作者
Owais Asif,Sajjad Haider,Syed Rameez Naqvi,John Zaki,Kyung Sup Kwak,S. M. Riazul Islam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 95425-95440 被引量:26
标识
DOI:10.1109/access.2022.3203406
摘要

In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of interest among the researchers. There exist various deep learning-based techniques which have been used for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory (LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine degradation dataset released by NASA is used to validate the performance of the proposed model. One important factor in RUL predictions is to determine the starting point of the engine degradation. This work proposes an improved piecewise linear degradation model to determine the starting point of deterioration and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose only those sensors measurement which have a monotonous behavior with RUL, which is then filtered through a moving median filter. The updated RUL labels from the degradation model together with the pre-processed data are used to train a deep LSTM network. The deep neural network when combined with dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in their experimental work. It is concluded that our model yields improvement in RUL prediction and attains minimum root mean squared error and score function values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
25秒前
小叶同学发布了新的文献求助10
31秒前
lixuebin完成签到 ,获得积分10
1分钟前
小马甲应助小叶同学采纳,获得10
1分钟前
一串数字发布了新的文献求助10
1分钟前
h0jian09完成签到,获得积分10
2分钟前
汉堡包应助XiaoXiao采纳,获得10
3分钟前
kk发布了新的文献求助10
3分钟前
kk完成签到,获得积分10
3分钟前
3分钟前
XiaoXiao发布了新的文献求助10
3分钟前
4分钟前
Nia发布了新的文献求助10
4分钟前
上官若男应助Nia采纳,获得10
4分钟前
5分钟前
5分钟前
wjadejing发布了新的文献求助10
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
hhf完成签到,获得积分10
6分钟前
123关闭了123文献求助
6分钟前
如初完成签到 ,获得积分10
6分钟前
迷你的靖雁完成签到,获得积分10
6分钟前
oceanao应助奋斗的杰采纳,获得10
7分钟前
7分钟前
爆米花应助科研通管家采纳,获得10
7分钟前
7分钟前
123发布了新的文献求助10
7分钟前
二中所长发布了新的文献求助10
7分钟前
直率靖荷发布了新的文献求助10
7分钟前
激动的似狮完成签到,获得积分10
8分钟前
9分钟前
hongxuezhi完成签到,获得积分10
9分钟前
lik发布了新的文献求助10
9分钟前
充电宝应助科研通管家采纳,获得10
9分钟前
Nia完成签到,获得积分20
9分钟前
9分钟前
Nia发布了新的文献求助10
9分钟前
10分钟前
直率靖荷完成签到,获得积分20
10分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899683
捐赠科研通 2472818
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142