A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

涡扇发动机 计算机科学 预言 人工神经网络 深度学习 停工期 可靠性(半导体) 人工智能 降维 数据建模 事后诸葛亮 机器学习 可靠性工程 数据挖掘 工程类 汽车工程 功率(物理) 物理 量子力学 数据库 操作系统 心理学 认知心理学
作者
Owais Asif,Sajjad Haider,Syed Rameez Naqvi,John Zaki,Kyung Sup Kwak,S. M. Riazul Islam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 95425-95440 被引量:26
标识
DOI:10.1109/access.2022.3203406
摘要

In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of interest among the researchers. There exist various deep learning-based techniques which have been used for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory (LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine degradation dataset released by NASA is used to validate the performance of the proposed model. One important factor in RUL predictions is to determine the starting point of the engine degradation. This work proposes an improved piecewise linear degradation model to determine the starting point of deterioration and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose only those sensors measurement which have a monotonous behavior with RUL, which is then filtered through a moving median filter. The updated RUL labels from the degradation model together with the pre-processed data are used to train a deep LSTM network. The deep neural network when combined with dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in their experimental work. It is concluded that our model yields improvement in RUL prediction and attains minimum root mean squared error and score function values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓聪健发布了新的文献求助10
1秒前
2秒前
OU发布了新的文献求助10
2秒前
1234567发布了新的文献求助10
3秒前
拼搏的白云完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
明亮的冷雪完成签到,获得积分10
7秒前
8秒前
顾矜应助zzz采纳,获得10
8秒前
9秒前
Silole发布了新的文献求助10
9秒前
11秒前
黄远鹏完成签到 ,获得积分10
11秒前
飞快的盈发布了新的文献求助10
13秒前
zoey发布了新的文献求助10
14秒前
hush完成签到,获得积分20
14秒前
1234567发布了新的文献求助10
15秒前
16秒前
17秒前
小灰完成签到,获得积分10
17秒前
Aaron567应助柠檬巧克力采纳,获得50
18秒前
风中的碧玉完成签到,获得积分10
20秒前
nini完成签到,获得积分20
21秒前
Zoye完成签到 ,获得积分10
22秒前
李成哲发布了新的文献求助10
22秒前
tczw667完成签到,获得积分10
23秒前
23秒前
脑洞疼应助飞兰采纳,获得10
23秒前
sandwich完成签到 ,获得积分10
24秒前
24秒前
zzz完成签到,获得积分10
26秒前
Hello应助zoey采纳,获得10
26秒前
zyyin完成签到,获得积分10
27秒前
Silole发布了新的文献求助10
27秒前
27秒前
张泽宇完成签到,获得积分10
28秒前
28秒前
1234567发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891