A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

涡扇发动机 计算机科学 预言 人工神经网络 深度学习 停工期 可靠性(半导体) 人工智能 降维 数据建模 事后诸葛亮 机器学习 可靠性工程 数据挖掘 工程类 汽车工程 功率(物理) 认知心理学 操作系统 物理 数据库 量子力学 心理学
作者
Owais Asif,Sajjad Haider,Syed Rameez Naqvi,John Zaki,Kyung Sup Kwak,S. M. Riazul Islam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 95425-95440 被引量:26
标识
DOI:10.1109/access.2022.3203406
摘要

In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of interest among the researchers. There exist various deep learning-based techniques which have been used for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory (LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine degradation dataset released by NASA is used to validate the performance of the proposed model. One important factor in RUL predictions is to determine the starting point of the engine degradation. This work proposes an improved piecewise linear degradation model to determine the starting point of deterioration and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose only those sensors measurement which have a monotonous behavior with RUL, which is then filtered through a moving median filter. The updated RUL labels from the degradation model together with the pre-processed data are used to train a deep LSTM network. The deep neural network when combined with dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in their experimental work. It is concluded that our model yields improvement in RUL prediction and attains minimum root mean squared error and score function values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温婉的念文完成签到,获得积分10
1秒前
王子完成签到,获得积分20
2秒前
2秒前
科研通AI2S应助zjq采纳,获得10
3秒前
11235应助hj采纳,获得30
4秒前
他比悲伤更悲伤完成签到,获得积分10
4秒前
李健应助影子采纳,获得10
6秒前
111111发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助50
6秒前
6秒前
8秒前
9秒前
9秒前
10秒前
浮游应助Rita采纳,获得10
10秒前
11秒前
Lucas应助duoduoudo采纳,获得10
12秒前
香蕉觅云应助王子采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
一二完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
111111完成签到,获得积分10
14秒前
14秒前
木心完成签到,获得积分10
14秒前
王婧萱萱萱完成签到 ,获得积分10
14秒前
西子阳发布了新的文献求助10
15秒前
西子阳发布了新的文献求助10
15秒前
迷人的语山完成签到,获得积分10
15秒前
西子阳发布了新的文献求助10
16秒前
大头发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896470
求助须知:如何正确求助?哪些是违规求助? 4178142
关于积分的说明 12969952
捐赠科研通 3941381
什么是DOI,文献DOI怎么找? 2162251
邀请新用户注册赠送积分活动 1180748
关于科研通互助平台的介绍 1086255