A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network

计算机科学 人工智能 期限(时间) 深度学习 流量(计算机网络) 卷积神经网络 智能交通系统 图形 邻接矩阵 数据挖掘 保险丝(电气) 机器学习 工程类 理论计算机科学 量子力学 电气工程 物理 土木工程 计算机安全
作者
Xiaoyu Qi,Gang Mei,Jingzhi Tu,Ning Xi,Francesco Piccialli
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8687-8700 被引量:45
标识
DOI:10.1109/tits.2022.3201879
摘要

As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼尾蓝完成签到 ,获得积分10
1秒前
1秒前
爆米花应助激情的凌晴采纳,获得30
1秒前
欢喜代萱发布了新的文献求助10
1秒前
XYZ完成签到,获得积分10
1秒前
上官若男应助xiaowang采纳,获得10
1秒前
彭于晏应助姜姜姜姜采纳,获得10
1秒前
1秒前
王博完成签到,获得积分10
2秒前
justdoit发布了新的文献求助10
2秒前
2秒前
3秒前
小茶发布了新的文献求助10
3秒前
3秒前
4秒前
大熊发布了新的文献求助10
4秒前
cmdan完成签到,获得积分10
5秒前
5秒前
情怀应助大豆终结者采纳,获得10
5秒前
nn发布了新的文献求助10
6秒前
6秒前
6秒前
Tting完成签到 ,获得积分10
6秒前
CC给CC的求助进行了留言
7秒前
7秒前
7秒前
7秒前
nini完成签到,获得积分20
8秒前
共享精神应助小小橙采纳,获得10
9秒前
DDD完成签到 ,获得积分10
9秒前
9秒前
酷波er应助挖井的人采纳,获得10
9秒前
所所应助朝朝采纳,获得10
9秒前
脑洞疼应助漂亮的念双采纳,获得10
10秒前
10秒前
yu完成签到,获得积分10
10秒前
ACCEPT发布了新的文献求助10
10秒前
CodeCraft应助helicase采纳,获得30
10秒前
姜姜姜姜完成签到,获得积分20
10秒前
科研小董发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961