A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network

计算机科学 人工智能 期限(时间) 深度学习 流量(计算机网络) 卷积神经网络 智能交通系统 图形 邻接矩阵 数据挖掘 机器学习 工程类 理论计算机科学 量子力学 物理 土木工程 计算机安全
作者
Xiaoyu Qi,Gang Mei,Jingzhi Tu,Ning Xi,Francesco Piccialli
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8687-8700 被引量:23
标识
DOI:10.1109/tits.2022.3201879
摘要

As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ghn123456789完成签到,获得积分10
1秒前
畅快沛白完成签到,获得积分10
1秒前
3秒前
张庭玉发布了新的文献求助10
3秒前
学术菜菜发布了新的文献求助10
5秒前
笨笨青筠发布了新的文献求助20
8秒前
SonRisa发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
背后的芝麻关注了科研通微信公众号
11秒前
11秒前
13秒前
13秒前
小白果果发布了新的文献求助10
14秒前
orixero应助Patrick采纳,获得10
15秒前
aaaaa发布了新的文献求助30
15秒前
11完成签到 ,获得积分10
17秒前
yjm发布了新的文献求助10
17秒前
科研通AI2S应助20005采纳,获得10
18秒前
吃鱼鱼鱼发布了新的文献求助10
18秒前
19秒前
clearwind完成签到,获得积分10
19秒前
20秒前
lq102021发布了新的文献求助10
23秒前
24秒前
25秒前
亚尔发布了新的文献求助10
27秒前
酷波er应助努力的咩咩采纳,获得10
27秒前
27秒前
27秒前
科研通AI2S应助太渊采纳,获得10
28秒前
一石二鸟应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
pluto应助科研通管家采纳,获得10
28秒前
热心的匕应助科研通管家采纳,获得10
28秒前
Fernanda完成签到,获得积分10
28秒前
28秒前
Orange应助科研通管家采纳,获得10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138062
求助须知:如何正确求助?哪些是违规求助? 2789039
关于积分的说明 7789616
捐赠科研通 2445478
什么是DOI,文献DOI怎么找? 1300354
科研通“疑难数据库(出版商)”最低求助积分说明 625902
版权声明 601046