A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network

计算机科学 人工智能 期限(时间) 深度学习 流量(计算机网络) 卷积神经网络 智能交通系统 图形 邻接矩阵 数据挖掘 机器学习 工程类 理论计算机科学 量子力学 物理 土木工程 计算机安全
作者
Xiaoyu Qi,Gang Mei,Jingzhi Tu,Ning Xi,Francesco Piccialli
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8687-8700 被引量:23
标识
DOI:10.1109/tits.2022.3201879
摘要

As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gentleman发布了新的文献求助200
1秒前
2秒前
勤奋的静竹完成签到,获得积分10
2秒前
3秒前
qianhuxinyu完成签到,获得积分10
4秒前
无语发布了新的文献求助10
4秒前
迟迟完成签到 ,获得积分10
5秒前
田一点完成签到,获得积分10
5秒前
皓月星辰发布了新的文献求助10
6秒前
深情安青应助呆呆采纳,获得10
7秒前
8秒前
喜悦的薯片关注了科研通微信公众号
8秒前
orixero应助welllllllllllll采纳,获得10
8秒前
杨欣发布了新的文献求助10
9秒前
xxddw发布了新的文献求助20
10秒前
10秒前
每天都美式完成签到,获得积分10
11秒前
小城完成签到 ,获得积分20
11秒前
miuu发布了新的文献求助10
11秒前
11秒前
11秒前
zy发布了新的文献求助10
12秒前
彭于晏应助沙枣花墙子采纳,获得10
13秒前
14秒前
solitude发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI2S应助miuu采纳,获得10
16秒前
16秒前
慕青应助暮然采纳,获得10
17秒前
ding应助zpl采纳,获得10
17秒前
asd完成签到,获得积分10
17秒前
MOMO发布了新的文献求助20
18秒前
18秒前
登登发布了新的文献求助10
18秒前
Akim应助谢谢采纳,获得10
18秒前
十有五发布了新的文献求助10
19秒前
20秒前
LLLi完成签到,获得积分20
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962798
求助须知:如何正确求助?哪些是违规求助? 3508732
关于积分的说明 11142584
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791581
邀请新用户注册赠送积分活动 872976
科研通“疑难数据库(出版商)”最低求助积分说明 803517