Nondestructive Prediction of Rice Seed Viability Using Spectral and Spatial Information Modeling of Visible–Near Infrared Hyperspectral Images

高光谱成像 支持向量机 人工智能 近红外光谱 模式识别(心理学) 线性判别分析 卷积神经网络 计算机科学 遥感 数学 生物系统 生物 物理 光学 地理
作者
Suk-Ju Hong,Tao Yang,Sang-Yeon Kim,EungChan Kim,ChangHyup Lee,Nandita Irasaulul Nurhisna,Sungjay Kim,Seung-Woo Roh,Jiwon Ryu,Ghiseok Kim
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:65 (5): 997-1006 被引量:5
标识
DOI:10.13031/ja.14982
摘要

Highlights An NIR-Vis hyperspectral imaging approach was developed to predict the viability of rice seeds. Through multi-step accelerated aging, seed lots in various states were used for the experiments. Models using spectral information and spectral-spatial information of hyperspectral images were used and compared. Abstract. Rice is one of the world’s most important food crops, and rice seed viability is an important factor in rice crop production. In this study, a visible–near infrared (vis–NIR) hyperspectral imaging system and spectral–spatial information modeling are used to predict the viability of rice seeds. Experimental samples are prepared using seeds harvested in two different years and artificially aged for various periods. Vis-NIR hyperspectral acquisition and germination tests of the prepared seed samples are performed. Partial least square (PLS)–discriminant analysis, a support vector machine (SVM), a PLS–SVM, a PLS–artificial neural network, and a one-dimensional–convolutional neural network (CNN) for the mean spectra of seeds, as well as a CNN, a PLS–CNN, and dual branch networks for the hyperspectral images of the seeds are applied for viability prediction modeling. Result shows that an accuracy of approximately 90% and high f1 scores can be obtained in most models. Furthermore, it is confirmed that models using spectral and spatial information can classify hard samples more effectively. Keywords: Deep learning, Hyperspectral images, Rice, Seed, Spectroscopy, Viability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈粒发布了新的文献求助10
刚刚
1秒前
四季西瓜完成签到,获得积分10
2秒前
勉乎哉发布了新的文献求助10
3秒前
研友_VZG7GZ应助无奈敏采纳,获得10
4秒前
潘继坤发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
俗丨发布了新的文献求助20
6秒前
刘666完成签到 ,获得积分10
7秒前
8秒前
9秒前
DengJJJ完成签到,获得积分10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
ruirui_love完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得50
11秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
小王同学应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
11111发布了新的文献求助10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得20
11秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337