Nondestructive Prediction of Rice Seed Viability Using Spectral and Spatial Information Modeling of Visible–Near Infrared Hyperspectral Images

高光谱成像 支持向量机 人工智能 近红外光谱 模式识别(心理学) 线性判别分析 卷积神经网络 计算机科学 遥感 数学 生物系统 生物 物理 光学 地理
作者
Suk-Ju Hong,Tao Yang,Sang-Yeon Kim,EungChan Kim,ChangHyup Lee,Nandita Irasaulul Nurhisna,Sungjay Kim,Seung-Woo Roh,Jiwon Ryu,Ghiseok Kim
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:65 (5): 997-1006 被引量:4
标识
DOI:10.13031/ja.14982
摘要

Highlights An NIR-Vis hyperspectral imaging approach was developed to predict the viability of rice seeds. Through multi-step accelerated aging, seed lots in various states were used for the experiments. Models using spectral information and spectral-spatial information of hyperspectral images were used and compared. Abstract. Rice is one of the world’s most important food crops, and rice seed viability is an important factor in rice crop production. In this study, a visible–near infrared (vis–NIR) hyperspectral imaging system and spectral–spatial information modeling are used to predict the viability of rice seeds. Experimental samples are prepared using seeds harvested in two different years and artificially aged for various periods. Vis-NIR hyperspectral acquisition and germination tests of the prepared seed samples are performed. Partial least square (PLS)–discriminant analysis, a support vector machine (SVM), a PLS–SVM, a PLS–artificial neural network, and a one-dimensional–convolutional neural network (CNN) for the mean spectra of seeds, as well as a CNN, a PLS–CNN, and dual branch networks for the hyperspectral images of the seeds are applied for viability prediction modeling. Result shows that an accuracy of approximately 90% and high f1 scores can be obtained in most models. Furthermore, it is confirmed that models using spectral and spatial information can classify hard samples more effectively. Keywords: Deep learning, Hyperspectral images, Rice, Seed, Spectroscopy, Viability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助鸡腿战神采纳,获得10
3秒前
lemon完成签到 ,获得积分10
3秒前
3秒前
Jorna发布了新的文献求助10
4秒前
西门博超发布了新的文献求助10
4秒前
菜菜一只完成签到,获得积分10
5秒前
5秒前
丁一一完成签到 ,获得积分10
6秒前
空空完成签到,获得积分10
6秒前
6秒前
袁睿韬应助追寻澜采纳,获得10
7秒前
ric发布了新的文献求助10
8秒前
共享精神应助courage采纳,获得10
8秒前
昏睡的蟠桃发布了新的文献求助200
8秒前
吃货发布了新的文献求助10
9秒前
9秒前
追寻的南风完成签到,获得积分10
10秒前
11秒前
hb完成签到,获得积分10
12秒前
WFLLL应助淼漫采纳,获得10
12秒前
传奇3应助noriZHC采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
wanci应助科研通管家采纳,获得10
13秒前
YSJ应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
14秒前
悄然飘去应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
柯一一应助科研通管家采纳,获得10
14秒前
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
turquoise发布了新的文献求助20
14秒前
云中应助科研通管家采纳,获得20
14秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352