Preoperative prediction of the Lauren classification in gastric cancer using automated nnU-Net and radiomics: a multicenter study

试验装置 医学 Lasso(编程语言) 人工智能 神经组阅片室 无线电技术 接收机工作特性 集合(抽象数据类型) 机器学习 放射科 内科学 计算机科学 神经学 精神科 万维网 程序设计语言
作者
Bo Cao,Jun Hu,Haige Li,Xuebing Liu,Chang Rong,Shuai Li,Xuedan He,Xiaomin Zheng,Kai‐Cai Liu,Chuanbin Wang,Wei Guo,Xingwang Wu
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1186/s13244-025-01923-9
摘要

Abstract Objectives To develop and validate a deep learning model based on nnU-Net combined with radiomics to achieve autosegmentation of gastric cancer (GC) and preoperative prediction via the Lauren classification. Methods Patients with a pathological diagnosis of GC were retrospectively enrolled in three medical centers. The nnU-Net autosegmentation model was developed using manually segmented datasets and evaluated by the Dice similarity coefficient (DSC). The CT images were processed by the nnU-Net model to obtain autosegmentation results and extract radiomic features. The least absolute shrinkage and selection operator (LASSO) method selects optimal features for calculating the Radscore and constructing a radiomic model. Clinical characteristics and the Radscore were integrated to construct a combined model. Model performance was evaluated via the receiver operating characteristic (ROC) curve. Results A total of 433 GC patients were divided into the training set, internal validation set, external test set-1, and external test set-2. The nnU-Net model achieved a DSC of 0.79 in the test set. The areas under the curve (AUCs) of the internal validation set, external test set-1, and external test set-2 were 0.84, 0.83, and 0.81, respectively, for the radiomic model; and 0.81, 0.81, and 0.82, respectively, for the combined model. The AUCs of the radiomic and combined models showed no statistically significant difference ( p > 0.05). The radiomic model was selected as the optimal model. Conclusions The nnU-Net model can efficiently and accurately achieve automatic segmentation of GCs. The radiomic model can preoperatively predict the Lauren classification of GC with high accuracy. Critical relevance statement This study highlights the potential of nnU-Net combined with radiomics to noninvasively predict the Lauren classification in gastric cancer patients, enhancing personalized treatment strategies and improving patient management. Key Points The Lauren classification influences gastric cancer treatment and prognosis. The nnU-Net model reduces doctors’ manual segmentation errors and workload. Radiomics models aid in preoperative Lauren classification prediction for patients with gastric cancer. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
典雅的静发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
JamesPei应助暗无圣龙王采纳,获得10
2秒前
澈哩发布了新的文献求助10
3秒前
4秒前
duomiaicha完成签到,获得积分10
4秒前
4秒前
li发布了新的文献求助10
4秒前
4秒前
外向问安完成签到,获得积分10
5秒前
思源应助雪白素采纳,获得10
5秒前
kk发布了新的文献求助10
5秒前
精明誉发布了新的文献求助10
5秒前
CipherSage应助吴彦祖采纳,获得10
5秒前
5秒前
5秒前
5秒前
安好发布了新的文献求助10
6秒前
辛勤的无血完成签到,获得积分10
6秒前
茱萸发布了新的文献求助10
7秒前
7秒前
PENG应助结实的半双采纳,获得10
8秒前
YJZ发布了新的文献求助30
8秒前
蛋挞豆花发布了新的文献求助10
10秒前
屈灿发布了新的文献求助10
10秒前
SEM小菜鸡完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI5应助辛勤的无血采纳,获得10
11秒前
pluto应助小天使海蒂采纳,获得10
11秒前
桪玖发布了新的文献求助10
11秒前
11秒前
脏脏包完成签到,获得积分10
12秒前
顺心的巨人完成签到,获得积分10
12秒前
13秒前
13秒前
NexusExplorer应助li采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514383
求助须知:如何正确求助?哪些是违规求助? 3096829
关于积分的说明 9232784
捐赠科研通 2791814
什么是DOI,文献DOI怎么找? 1532045
邀请新用户注册赠送积分活动 711754
科研通“疑难数据库(出版商)”最低求助积分说明 707031