亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prospective Evaluation of Structure-Based Simulations Reveal Their Ability to Predict the Impact of Kinase Mutations on Inhibitor Binding

激酶 计算生物学 化学 遗传学 生物
作者
Sukrit Singh,Vytautas Gapsys,Matteo Aldeghi,David Schaller,Aziz M. Rangwala,Jessica White,Joseph P. Bluck,Jenke Scheen,William G. Glass,Jiaye Guo,Sikander Hayat,Bert L. de Groot,Andrea Volkamer,Clara D. Christ,Markus A. Seeliger,John D. Chodera
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07794
摘要

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的洋葱完成签到,获得积分10
3秒前
Panacea完成签到 ,获得积分10
4秒前
独特的易形完成签到 ,获得积分10
10秒前
14秒前
jeff完成签到,获得积分10
14秒前
16秒前
开胃咖喱完成签到,获得积分10
17秒前
Huzhu发布了新的文献求助10
23秒前
Tania完成签到,获得积分10
26秒前
34秒前
37秒前
38秒前
cometx发布了新的文献求助10
40秒前
42秒前
花陵完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
1分钟前
去码头整点薯条完成签到,获得积分10
1分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
ADcal完成签到 ,获得积分10
2分钟前
2分钟前
badabadaba关注了科研通微信公众号
2分钟前
2分钟前
3分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
金沐栋发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177