Prospective Evaluation of Structure-Based Simulations Reveal Their Ability to Predict the Impact of Kinase Mutations on Inhibitor Binding

激酶 计算生物学 化学 遗传学 生物
作者
Sukrit Singh,Vytautas Gapsys,Matteo Aldeghi,David Schaller,Aziz M. Rangwala,Jessica White,Joseph P. Bluck,Jenke Scheen,William G. Glass,Jiaye Guo,Sikander Hayat,Bert L. de Groot,Andrea Volkamer,Clara D. Christ,Markus A. Seeliger,John D. Chodera
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07794
摘要

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江峰发布了新的文献求助10
刚刚
刚刚
xjtuwang0618完成签到,获得积分10
刚刚
碧蓝烨霖发布了新的文献求助10
1秒前
2秒前
koko完成签到,获得积分10
4秒前
xiaofeizhu完成签到,获得积分10
6秒前
yuC发布了新的文献求助10
6秒前
研友_8oYMyn发布了新的文献求助10
7秒前
7秒前
santrue完成签到,获得积分10
8秒前
孤独的静枫完成签到,获得积分10
10秒前
荷兰香猪完成签到,获得积分10
11秒前
11秒前
12秒前
执着惜梦完成签到,获得积分10
12秒前
13秒前
王大壮完成签到,获得积分10
14秒前
彩色蓉完成签到,获得积分10
14秒前
现实的洋葱完成签到 ,获得积分10
16秒前
Akim应助薄荷之夏采纳,获得10
16秒前
麦克发布了新的文献求助10
16秒前
17秒前
请叫我风吹麦浪应助wzc采纳,获得30
17秒前
18秒前
vocuong发布了新的文献求助10
18秒前
NexusExplorer应助errui采纳,获得10
19秒前
19秒前
19秒前
年轻的茗茗完成签到,获得积分10
20秒前
20秒前
烛光关注了科研通微信公众号
21秒前
22秒前
22秒前
555557应助nobody采纳,获得10
23秒前
充电宝应助碧蓝烨霖采纳,获得10
23秒前
wenhao发布了新的文献求助10
23秒前
24秒前
奶油小饼干完成签到,获得积分10
24秒前
hh发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516