Prospective Evaluation of Structure-Based Simulations Reveal Their Ability to Predict the Impact of Kinase Mutations on Inhibitor Binding

激酶 计算生物学 化学 遗传学 生物
作者
Sukrit Singh,Vytautas Gapsys,Matteo Aldeghi,David Schaller,Aziz M. Rangwala,Jessica White,Joseph P. Bluck,Jenke Scheen,William G. Glass,Jiaye Guo,Sikander Hayat,Bert L. de Groot,Andrea Volkamer,Clara D. Christ,Markus A. Seeliger,John D. Chodera
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07794
摘要

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
湘崽丫完成签到 ,获得积分10
刚刚
viper3完成签到,获得积分10
刚刚
1秒前
乐乐应助xyyl采纳,获得10
2秒前
2秒前
3秒前
4秒前
4秒前
Dream发布了新的文献求助10
4秒前
sunbai发布了新的文献求助10
4秒前
equinox发布了新的文献求助10
4秒前
5秒前
5秒前
葛稀驳回了Akim应助
5秒前
6秒前
6秒前
852应助咖褐采纳,获得10
6秒前
6秒前
7秒前
7秒前
张111发布了新的文献求助10
7秒前
hbhbj发布了新的文献求助10
7秒前
TearMarks发布了新的文献求助10
8秒前
所所应助LYZ采纳,获得10
8秒前
吞金完成签到,获得积分10
8秒前
lin发布了新的文献求助10
8秒前
科研通AI6应助小笨嘴采纳,获得10
9秒前
zxf完成签到,获得积分20
10秒前
cassiecx发布了新的文献求助10
10秒前
七七发布了新的文献求助10
10秒前
11秒前
福明明完成签到,获得积分10
11秒前
zxf发布了新的文献求助10
11秒前
12秒前
要努力写文章的小白完成签到,获得积分10
12秒前
FashionBoy应助蜜蜜芪采纳,获得10
12秒前
gwt完成签到,获得积分10
13秒前
fish112发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058