Prospective Evaluation of Structure-Based Simulations Reveal Their Ability to Predict the Impact of Kinase Mutations on Inhibitor Binding

激酶 计算生物学 化学 遗传学 生物
作者
Sukrit Singh,Vytautas Gapsys,Matteo Aldeghi,David Schaller,Aziz M. Rangwala,Jessica White,Joseph P. Bluck,Jenke Scheen,William G. Glass,Jiaye Guo,Sikander Hayat,Bert L. de Groot,Andrea Volkamer,Clara D. Christ,Markus A. Seeliger,John D. Chodera
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07794
摘要

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晒黑的雪碧完成签到,获得积分10
1秒前
yao chen完成签到,获得积分10
2秒前
catch完成签到,获得积分10
2秒前
Hrx完成签到,获得积分10
2秒前
哎呀哎呀25完成签到,获得积分10
3秒前
6秒前
Shark完成签到 ,获得积分10
6秒前
我要发财完成签到,获得积分10
7秒前
卡卡罗特完成签到,获得积分10
7秒前
7秒前
天天向上完成签到 ,获得积分10
8秒前
Xinxxx完成签到,获得积分10
8秒前
Echoheart完成签到,获得积分10
8秒前
Hrx发布了新的文献求助10
9秒前
我要发财发布了新的文献求助10
11秒前
WJing发布了新的文献求助10
12秒前
haonanchen完成签到,获得积分10
13秒前
彭于晏应助专注的白柏采纳,获得10
13秒前
99v587完成签到,获得积分10
14秒前
愤怒的小马发布了新的文献求助200
15秒前
朴素海亦完成签到 ,获得积分10
16秒前
wishes完成签到 ,获得积分10
17秒前
17秒前
南城完成签到 ,获得积分10
18秒前
18秒前
20秒前
Andy完成签到,获得积分10
22秒前
伦语发布了新的文献求助10
22秒前
xdc发布了新的文献求助10
24秒前
zoe发布了新的文献求助10
26秒前
ccCherub完成签到,获得积分10
28秒前
霍楠完成签到,获得积分10
28秒前
星辰大海应助rainny采纳,获得10
28秒前
EZ完成签到 ,获得积分10
28秒前
谨慎翎完成签到 ,获得积分10
29秒前
tiantian8715完成签到,获得积分10
29秒前
如泣草芥完成签到,获得积分0
29秒前
jzhecb完成签到 ,获得积分10
30秒前
花海完成签到,获得积分10
30秒前
lingck完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029