Prospective Evaluation of Structure-Based Simulations Reveal Their Ability to Predict the Impact of Kinase Mutations on Inhibitor Binding

激酶 计算生物学 化学 遗传学 生物
作者
Sukrit Singh,Vytautas Gapsys,Matteo Aldeghi,David Schaller,Aziz M. Rangwala,Jessica White,Joseph P. Bluck,Jenke Scheen,William G. Glass,Jiaye Guo,Sikander Hayat,Bert L. de Groot,Andrea Volkamer,Clara D. Christ,Markus A. Seeliger,John D. Chodera
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07794
摘要

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
masterwjc完成签到,获得积分10
2秒前
银鱼在游发布了新的文献求助10
2秒前
2秒前
3秒前
佰斯特威应助yenom采纳,获得10
5秒前
上分发布了新的文献求助10
6秒前
似水流年完成签到,获得积分10
6秒前
李德胜完成签到,获得积分10
7秒前
7秒前
完美世界应助ira采纳,获得10
9秒前
10秒前
在水一方应助务实青筠采纳,获得10
10秒前
科研通AI6应助钟鸿盛Domi采纳,获得150
11秒前
科研通AI6应助钟鸿盛Domi采纳,获得10
11秒前
11秒前
小二郎应助钟鸿盛Domi采纳,获得10
11秒前
科研通AI5应助钟鸿盛Domi采纳,获得10
11秒前
善学以致用应助钟鸿盛Domi采纳,获得10
11秒前
iNk应助俏皮诺言采纳,获得10
11秒前
科研通AI5应助钟鸿盛Domi采纳,获得10
11秒前
科研通AI6应助钟鸿盛Domi采纳,获得10
11秒前
科研通AI6应助钟鸿盛Domi采纳,获得10
11秒前
NexusExplorer应助钟鸿盛Domi采纳,获得150
11秒前
安殿夏完成签到 ,获得积分10
11秒前
abib完成签到,获得积分10
12秒前
执着谷兰应助amysteryboy采纳,获得10
13秒前
上分完成签到,获得积分10
13秒前
clock完成签到 ,获得积分10
14秒前
昏睡的以寒完成签到,获得积分10
14秒前
卑微的学牛马完成签到,获得积分10
14秒前
vv的平行宇宙完成签到,获得积分10
16秒前
大模型应助温茶采纳,获得10
18秒前
神揽星辰入梦完成签到,获得积分10
19秒前
24秒前
double发布了新的文献求助10
24秒前
Dphile完成签到,获得积分20
24秒前
kkkk完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Highway Capacity Manual 7th Edition 800
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632654
求助须知:如何正确求助?哪些是违规求助? 4028888
关于积分的说明 12465928
捐赠科研通 3715064
什么是DOI,文献DOI怎么找? 2049912
邀请新用户注册赠送积分活动 1081509
科研通“疑难数据库(出版商)”最低求助积分说明 963865