Prospective Evaluation of Structure-Based Simulations Reveal Their Ability to Predict the Impact of Kinase Mutations on Inhibitor Binding

激酶 计算生物学 化学 遗传学 生物
作者
Sukrit Singh,Vytautas Gapsys,Matteo Aldeghi,David Schaller,Aziz M. Rangwala,Jessica White,Joseph P. Bluck,Jenke Scheen,William G. Glass,Jiaye Guo,Sikander Hayat,Bert L. de Groot,Andrea Volkamer,Clara D. Christ,Markus A. Seeliger,John D. Chodera
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07794
摘要

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气蓝发布了新的文献求助10
刚刚
科研通AI5应助xhl采纳,获得10
1秒前
zyl发布了新的文献求助10
1秒前
成就雨筠应助科研通管家采纳,获得10
1秒前
贰鸟应助科研通管家采纳,获得10
1秒前
义气天川应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
jiseng发布了新的文献求助20
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
贰鸟应助科研通管家采纳,获得10
2秒前
GGG完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
成就雨筠应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
zzz发布了新的文献求助10
2秒前
3秒前
3秒前
DoLaso完成签到,获得积分10
3秒前
孤独小土豆完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
桐桐应助妞妞采纳,获得10
6秒前
YM完成签到,获得积分10
7秒前
8秒前
molvguang完成签到,获得积分10
8秒前
8秒前
LHC完成签到,获得积分10
9秒前
科研通AI5应助简单点采纳,获得10
9秒前
简一发布了新的文献求助10
9秒前
我是老大应助云澈采纳,获得10
9秒前
Lucas应助PANYIAO采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541389
求助须知:如何正确求助?哪些是违规求助? 3118639
关于积分的说明 9336627
捐赠科研通 2816595
什么是DOI,文献DOI怎么找? 1548531
邀请新用户注册赠送积分活动 721567
科研通“疑难数据库(出版商)”最低求助积分说明 712729