🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study

逻辑回归 抑郁症状 机器学习 回归 人工智能 计算机科学 医学 统计 精神科 数学 焦虑
作者
Xing‐Xuan Dong,Jianhua Liu,Tianyang Zhang,Chen‐Wei Pan,Chunhua Zhao,Yibo Wu,Dandan Chen
出处
期刊:Psychiatry Investigation [Korean Neuropsychiatric Association]
卷期号:22 (3): 267-278
标识
DOI:10.30773/pi.2024.0156
摘要

Objective Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.Methods Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).Results LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.Conclusion Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的菠萝完成签到,获得积分10
1秒前
chenxilulu完成签到,获得积分10
1秒前
Ava应助努力搬砖努力干采纳,获得10
2秒前
xia发布了新的文献求助10
2秒前
田様应助伍秋望采纳,获得10
2秒前
野草完成签到,获得积分10
2秒前
眭超阳完成签到 ,获得积分10
4秒前
yinger1984完成签到,获得积分10
4秒前
快乐访旋完成签到 ,获得积分10
6秒前
Owen应助GH采纳,获得10
6秒前
7秒前
一二发布了新的文献求助10
7秒前
8秒前
Lucas应助隐形的冰兰采纳,获得10
9秒前
Dawn完成签到,获得积分10
9秒前
222完成签到 ,获得积分10
10秒前
情怀应助ZZzz采纳,获得10
10秒前
nora完成签到,获得积分10
10秒前
科研通AI2S应助yk采纳,获得10
10秒前
11秒前
鳗鱼元正发布了新的文献求助10
11秒前
11秒前
黄黄黄完成签到,获得积分10
13秒前
14秒前
无误发布了新的文献求助10
14秒前
所所应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
HEIKU应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
foam应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得20
15秒前
HEIKU应助科研通管家采纳,获得10
15秒前
wadaxiwa应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
半柚应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Comprehensive Computational Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3604255
求助须知:如何正确求助?哪些是违规求助? 3172330
关于积分的说明 9573808
捐赠科研通 2878425
什么是DOI,文献DOI怎么找? 1580926
邀请新用户注册赠送积分活动 743285
科研通“疑难数据库(出版商)”最低求助积分说明 725901