Diagnosis of Metastatic Breast Tumor with an Iron-Based Hydrogen-Bonded Organic Framework via T2-Weighted Magnetic Resonance Imaging

化学 磁共振成像 核磁共振 分析化学(期刊) 放射科 有机化学 医学 物理
作者
Xiang Zhou,Nan Zhang,Sixue Ouyang,Ningxuan Liu,Zhiyuan Zheng,Yuanyuan You,Yida An,Ling Lu,Peng Zhao,Yang Wang,Jia Tao
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c06942
摘要

Magnetic resonance imaging (MRI) often employs contrast agents (CAs) to improve the visualization of lesions. Although iron-based oxides have been clinically approved as T2 CAs, various obstacles have hindered their widespread commercial use. Consequently, there is a pressing demand for innovative T2-type CAs. Herein, we synthesized an iron-based hydrogen-bonded organic framework (Fe-HOF) from Fe-TCPP and explored its potential as a T2-weighted MRI CA. The Fe-HOF demonstrated a superior relaxivity (r2) of 32.067 mM–1 s–1 and a higher r2/r1 ratio of 45.25 compared to Fe-TCPP. This enhancement may be attributed to the combination of the single-atom form of Fe3+ with its increased radius. Our findings indicate that a 6 μmol [Fe]/kg dose of Fe-HOF significantly improves lesion contrast in T2-weighted MRI scans of subcutaneous tumor model mice and liver metastasis model mice of breast tumor. The simplicity of Fe-HOF' s structure ensures the absence of complex metal ions or ligands during synthesis, and the iron component can be metabolized into the endogenous iron pool, resulting in remarkable biocompatibility and biosafety. These findings pave the way for the design of novel T2-weighted MRI probes tailored for cancer characterization at various stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助huilihub采纳,获得10
1秒前
来一瓶纯水乐完成签到,获得积分20
1秒前
乐乐应助小普采纳,获得10
1秒前
要减肥语山完成签到 ,获得积分10
2秒前
小王啵啵完成签到 ,获得积分10
2秒前
约定完成签到,获得积分10
2秒前
伊小美完成签到,获得积分10
3秒前
bluefire完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
一顿鸡米花完成签到,获得积分10
5秒前
5秒前
兴奋白枫发布了新的文献求助10
5秒前
5秒前
大模型应助鼻揩了转去采纳,获得10
6秒前
cooper完成签到 ,获得积分10
6秒前
6秒前
大力的海蓝完成签到,获得积分10
7秒前
9秒前
www发布了新的文献求助10
9秒前
芝9512发布了新的文献求助10
10秒前
早上坏完成签到,获得积分10
10秒前
情怀应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
Evelyn完成签到,获得积分10
12秒前
Lj应助科研通管家采纳,获得10
12秒前
Sea_U应助科研通管家采纳,获得10
12秒前
Lj应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
脑洞疼应助直率小霜采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得30
12秒前
12秒前
13秒前
gift发布了新的文献求助10
13秒前
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285