-Research Progress on the Enhancement and Modification of PVDF-Based Polymer Electrolytes and Their Applications in Solid-State Lithium Metal Batteries.

金属锂 聚合物电解质 材料科学 锂(药物) 固态 聚合物 电解质 纳米技术 快离子导体 化学工程 高分子科学 工程物理 电极 化学 离子电导率 工程类 复合材料 物理化学 医学 内分泌学
作者
Fangyuan Zhao,Jialong Wu,Chu Qin,Zhong‐Jie Jiang,Guangliang Chen,T. Maiyalagan,Zhongqing Jiang
出处
期刊:PubMed 卷期号:: e202401974-e202401974
标识
DOI:10.1002/asia.202401974
摘要

Traditional liquid electrolyte-based lithium-ion batteries (LIBs) are constrained by safety risks such as flammability and explosion, as well as a relatively low theoretical specific capacity (~300 mAh g⁻1). Lithium-metal batteries (LMB), offering higher energy density and enhanced safety, have emerged as a competitive candidate for next-generation lithium-based batteries. As a key component of LMBs, polymer electrolytes are expected to exhibit excellent ionic conductivity, robust mechanical properties, and stable interfacial compatibility with electrode materials. Among the diverse range of polymer electrolytes, polyvinylidene fluoride (PVDF)-based polymer electrolytes stand out due to their unique properties. PVDF, with its high dielectric constant, effectively facilitates lithium salt dissociation and ion migration, while maintaining excellent mechanical flexibility. These characteristics position PVDF-based polymer electrolytes as a promising material for LMBs. This review begins by introducing the classification of polymer electrolytes and the mechanisms of lithium-ion migration within them. It then focuses on PVDF-based polymer electrolytes, systematically discussing the synthetic and modification strategies categorized into four main approaches: composite fabrication, inorganic filler doping, liquid additive modification, and multi-strategy modification. Finally, the challenges and future prospects of PVDF-based polymer electrolytes are reviewed to provide insights for developing high-performance polymer electrolytes in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狂野绿竹完成签到,获得积分10
刚刚
lehha完成签到,获得积分10
1秒前
Jiang完成签到,获得积分10
1秒前
大模型应助淡然的冰海采纳,获得10
1秒前
英姑应助早日毕业采纳,获得30
2秒前
LU41完成签到,获得积分10
2秒前
SciGPT应助调皮誉采纳,获得10
5秒前
小蘑菇应助长情指甲油采纳,获得10
5秒前
xianglily完成签到 ,获得积分10
6秒前
NiLou完成签到,获得积分10
6秒前
听寒发布了新的文献求助10
6秒前
卓矢完成签到 ,获得积分10
7秒前
8秒前
123456发布了新的文献求助10
10秒前
MingandMin完成签到,获得积分10
10秒前
吃点红糖馒头完成签到,获得积分10
11秒前
大气小新发布了新的文献求助10
11秒前
科研通AI5应助王辰睿采纳,获得10
11秒前
七叶树完成签到,获得积分10
12秒前
朱孝培完成签到,获得积分10
12秒前
无心的夏烟完成签到,获得积分20
13秒前
14秒前
14秒前
CLL完成签到 ,获得积分10
14秒前
Sweet完成签到 ,获得积分10
14秒前
友好真完成签到 ,获得积分10
15秒前
朴实寻琴完成签到 ,获得积分10
16秒前
天气一级棒完成签到,获得积分10
16秒前
17秒前
19秒前
20秒前
柔弱的面包完成签到,获得积分10
20秒前
20秒前
21秒前
小蘑菇应助猜不猜不采纳,获得10
23秒前
早日毕业发布了新的文献求助30
25秒前
AAAAAAAAAAA发布了新的文献求助10
25秒前
25秒前
鬼鬼完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481