Kinetics Manipulation Enabled by Solubility Control Toward 19% Organic Solar Cells via Compatible Air Coating.

材料科学 溶解度 涂层 动力学 有机太阳能电池 化学工程 纳米技术 有机化学 复合材料 聚合物 化学 物理 量子力学 工程类
作者
Yongwen Lang,Ying Zhang,Xia Hao,Kuan Liu,Yúang Fu,Liang Han,W.K. Fong,Dongyang Li,Miao Zhang,Wai‐Yeung Wong,Xinhui Lu,Tiangang Yang,Feng He,Yang Yang,Gang Li
出处
期刊:PubMed 卷期号:: e2420096-e2420096
标识
DOI:10.1002/adma.202420096
摘要

Blade coating is a promising tool for upscaling organic solar cells (OSCs). However, the performances of blade-coated OSCs still lag behind their spin-coated counterparts, limiting their competitive edge towards commercialization. One of the main reasons is that controlling the film aggregation kinetics and morphology becomes challenging during the transition from spin coating to blade coating, especially when using high boiling point solvents, which can result in excessive aggregation. Therefore, a deeper understanding and appraisal of film formation kinetics influenced by coating methods is crucial. In this work, it is demonstrated that ink solubility tuning by incorporating a twisted third component (BTP-4Cl) can induce rapid crystallization behavior and promote fine phase separation between the donor polymer (PM6) and the acceptor (BTP-eC9) in blade coating. As a result, a high power conversion efficiency (PCE) of 19.67% is obtained in OSCs (0.04 cm2), one of the state-of-the-art efficiencies among the reported blade-coated OSCs (19.76% for the spin-coated devices). In addition, it is found that the inhibited phase aggregation contributes to enhancing the light stability of the device. This strategy offered novel insights into the effectiveness of solubility-tuning approaches for achieving highly efficient and stable OSCs under open-air coating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁来如此发布了新的文献求助10
1秒前
bkagyin应助kkc采纳,获得10
1秒前
润润润发布了新的文献求助100
1秒前
危险源完成签到,获得积分10
1秒前
充电宝应助逸仙人采纳,获得10
1秒前
陶醉冷亦发布了新的文献求助10
1秒前
Ava应助Jameson采纳,获得10
2秒前
失似发布了新的文献求助10
2秒前
jie完成签到,获得积分10
3秒前
桃子完成签到 ,获得积分10
3秒前
Ava应助温暖的冷风采纳,获得10
3秒前
淡定雁开完成签到,获得积分10
3秒前
Winnie发布了新的文献求助10
3秒前
英姑应助WRWRWR采纳,获得10
4秒前
Jasper应助叶叶叶叶采纳,获得10
5秒前
朴实云朵完成签到,获得积分10
5秒前
胖大海完成签到,获得积分10
5秒前
6秒前
英姑应助ixueyi采纳,获得10
6秒前
6秒前
找寻四氢叶酸完成签到,获得积分10
7秒前
小神仙完成签到,获得积分10
7秒前
科比布莱恩特三世完成签到,获得积分10
7秒前
静水深流发布了新的文献求助10
7秒前
Lucas应助开放的紫易采纳,获得10
7秒前
搜集达人应助小飞飞采纳,获得10
9秒前
9秒前
ndwxk完成签到,获得积分10
9秒前
10秒前
Eden发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
Lucas应助zpctx采纳,获得10
12秒前
柠檬水完成签到,获得积分10
12秒前
kkc完成签到,获得积分10
12秒前
12秒前
13秒前
贪玩惜文完成签到,获得积分10
13秒前
科研通AI2S应助虚心盼夏采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552538
求助须知:如何正确求助?哪些是违规求助? 3128619
关于积分的说明 9378862
捐赠科研通 2827792
什么是DOI,文献DOI怎么找? 1554672
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714981