Kinetics Manipulation Enabled by Solubility Control Toward 19% Organic Solar Cells via Compatible Air Coating

材料科学 溶解度 涂层 动力学 有机太阳能电池 化学工程 纳米技术 有机化学 复合材料 聚合物 量子力学 物理 工程类 化学
作者
Yongwen Lang,Ying Zhang,Hao Xia,Kuan Liu,Yúang Fu,Liang Han,W.K. Fong,Dongyang Li,Miao Zhang,Wai‐Yeung Wong,Xinhui Lu,Tiangang Yang,Feng He,Yang Yang,Gang Li
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (14): e2420096-e2420096 被引量:10
标识
DOI:10.1002/adma.202420096
摘要

Abstract Blade coating is a promising tool for upscaling organic solar cells (OSCs). However, the performances of blade‐coated OSCs still lag behind their spin‐coated counterparts, limiting their competitive edge towards commercialization. One of the main reasons is that controlling the film aggregation kinetics and morphology becomes challenging during the transition from spin coating to blade coating, especially when using high boiling point solvents, which can result in excessive aggregation. Therefore, a deeper understanding and appraisal of film formation kinetics influenced by coating methods is crucial. In this work, it is demonstrated that ink solubility tuning by incorporating a twisted third component (BTP‐4Cl) can induce rapid crystallization behavior and promote fine phase separation between the donor polymer (PM6) and the acceptor (BTP‐eC9) in blade coating. As a result, a high power conversion efficiency (PCE) of 19.67% is obtained in OSCs (0.04 cm 2 ), one of the state‐of‐the‐art efficiencies among the reported blade‐coated OSCs (19.76% for the spin‐coated devices). In addition, it is found that the inhibited phase aggregation contributes to enhancing the light stability of the device. This strategy offered novel insights into the effectiveness of solubility‐tuning approaches for achieving highly efficient and stable OSCs under open‐air coating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qu完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
冰火完成签到,获得积分10
2秒前
liman发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Ellalala完成签到 ,获得积分10
3秒前
jmy1995发布了新的文献求助10
3秒前
4秒前
阔达忆秋发布了新的文献求助10
4秒前
星辰大海应助邵老头采纳,获得10
5秒前
NEKO发布了新的文献求助10
6秒前
小李发布了新的文献求助10
6秒前
6秒前
懦弱的沛芹完成签到,获得积分20
6秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
实验狗发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
16秒前
17秒前
zyy发布了新的文献求助30
17秒前
超级灰狼完成签到 ,获得积分10
17秒前
18秒前
sfliufighting发布了新的文献求助10
18秒前
Hello应助哈哈采纳,获得10
18秒前
Akazugi应助ceeray23采纳,获得20
19秒前
老坛完成签到,获得积分10
20秒前
彭于晏应助yanyuqing采纳,获得10
20秒前
xin完成签到,获得积分10
20秒前
Orange应助野生菜狗采纳,获得10
20秒前
Ian发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713510
求助须知:如何正确求助?哪些是违规求助? 5216103
关于积分的说明 15271135
捐赠科研通 4865261
什么是DOI,文献DOI怎么找? 2611946
邀请新用户注册赠送积分活动 1562153
关于科研通互助平台的介绍 1519378