Kinetics Manipulation Enabled by Solubility Control Toward 19% Organic Solar Cells via Compatible Air Coating

材料科学 溶解度 涂层 动力学 有机太阳能电池 化学工程 纳米技术 有机化学 复合材料 聚合物 化学 物理 量子力学 工程类
作者
Yongwen Lang,Ying Zhang,Hao Xia,Kuan Liu,Yúang Fu,Liang Han,W.K. Fong,Dongyang Li,Miao Zhang,Wai‐Yeung Wong,Xinhui Lu,Tiangang Yang,Feng He,Yang Yang,Gang Li
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202420096
摘要

Abstract Blade coating is a promising tool for upscaling organic solar cells (OSCs). However, the performances of blade‐coated OSCs still lag behind their spin‐coated counterparts, limiting their competitive edge towards commercialization. One of the main reasons is that controlling the film aggregation kinetics and morphology becomes challenging during the transition from spin coating to blade coating, especially when using high boiling point solvents, which can result in excessive aggregation. Therefore, a deeper understanding and appraisal of film formation kinetics influenced by coating methods is crucial. In this work, it is demonstrated that ink solubility tuning by incorporating a twisted third component (BTP‐4Cl) can induce rapid crystallization behavior and promote fine phase separation between the donor polymer (PM6) and the acceptor (BTP‐eC9) in blade coating. As a result, a high power conversion efficiency (PCE) of 19.67% is obtained in OSCs (0.04 cm 2 ), one of the state‐of‐the‐art efficiencies among the reported blade‐coated OSCs (19.76% for the spin‐coated devices). In addition, it is found that the inhibited phase aggregation contributes to enhancing the light stability of the device. This strategy offered novel insights into the effectiveness of solubility‐tuning approaches for achieving highly efficient and stable OSCs under open‐air coating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Hofer采纳,获得10
1秒前
2秒前
2秒前
3秒前
RUI完成签到 ,获得积分10
3秒前
老福贵儿应助qi采纳,获得10
3秒前
1111111发布了新的文献求助10
3秒前
LQ发布了新的文献求助30
3秒前
4秒前
xxfsx应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
球瑶应助科研通管家采纳,获得10
5秒前
隐形不惜发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得20
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得50
6秒前
xxfsx应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
风吹麦田应助科研通管家采纳,获得30
7秒前
wyf发布了新的文献求助10
7秒前
动听易槐应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
多年以后完成签到,获得积分10
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227115
求助须知:如何正确求助?哪些是违规求助? 4398306
关于积分的说明 13688947
捐赠科研通 4262971
什么是DOI,文献DOI怎么找? 2339469
邀请新用户注册赠送积分活动 1336764
关于科研通互助平台的介绍 1292855