丝胶
材料科学
丝绸
纳米技术
生物医学工程
复合材料
工程类
作者
Qiying Lv,Shiyu Chen,Dan Luo,Huan Liu,Yu Song,Miaodeng Liu,Fei Xiao,Zheng Wang,Lin Wang
标识
DOI:10.1002/adma.202413610
摘要
Abstract Current cardiovascular implantable electronic devices (CIEDs) face a pressing clinical need for the development of battery‐free, biodegradable, and biocompatible devices to mitigate the risk of adverse in vivo responses. To address this demand, it is proposed utilizing a natural biomaterial, silk sericin (SS), which exhibits valuable biological activities and contains abundant asymmetric amino acids with adjustable structures, to create an implantable self‐powered system based on the piezoelectric principle. The functionalized SS‐based (F‐SS‐based) piezoelectric film demonstrates a high longitudinal piezoelectric tensor ( d 33 ) of 12 pC N −1 . An energy‐generating device (EG device) utilizing this piezoelectric film can generate electric energy under mechanical force both in vitro and in vivo. By manually tapping the EG‐device for a few minutes, the accumulated electricity in a commercial capacitor (1.1 µF) could illuminate LEDs or operate a timer. Furthermore, the instantaneous energy power density (218.5 µW m −2 ) achieved by manual pressing the EG device is sufficient to deliver effective pacing to restart a non‐beating heart or normalize an atrioventricular block in a preclinical model. Owing to its high biocompatibility and biodegradability in physiological environments, the F‐SS‐based EG device holds significant promise for the advancement of self‐powered power systems for next‐generation CIEDs and other implantable and degradable electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI