材料科学
溶解
镍
电解质
化学工程
阴极
过渡金属
兴奋剂
离子
结晶学
电极
冶金
催化作用
物理化学
化学
有机化学
光电子学
工程类
作者
Jing Li,Wentao Zhong,Qiang Deng,Qimeng Zhang,Zhang Lin,Chenghao Yang
标识
DOI:10.1002/adfm.202300127
摘要
Abstract Nickel‐rich layered oxides have attracted many attentions for their superior specific capacity and low cost, but they are subjected to fast structural degradation during cycling. Herein, the Al and Sm co‐doped LiNi 0.83 Co 0.07 Mn 0.10 O 2 (SC‐NCM‐AS) single‐crystal is demonstrated to overcome their cycling instability issue, and its mechanistic origin for improved structural stability is investigated. It is found that soluble Al ions are homogenously incorporated in the LiNi 0.83 Co 0.07 Mn 0.10 O 2 (SC‐NCM) lattice, while Sm ions tends to aggregate in the SC‐NCM outer surface layer. The Li/Ni cation disordering is greatly suppressed through the pillaring effect of stronger AlO bond in SC‐NCM single crystals. Sm‐concentrated outer surface layer can effectively prevent the dissolution of transition metals from SC‐NCM‐AS and inhibit undesirable side reactions induced by the organic electrolyte. This synergistic effect facilitates to suppress the formation of LiOH/Li 2 CO 3 and oxygen vacancies, resulting in released the internal strain, decreased in‐plane transition metals migration and gliding, and eventually preventing formation of nanocracks in SC‐NCM‐AS single crystals upon cycling at high cut‐off voltage. Consequently, Al and Sm co‐doped SC‐NCM exhibits a high specific capacity of 222.4 mAh g −1 and remarkable cycling performance with a capacity retention of 91.1% for 100 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI