Neural network model based on global and local features for multi-view mammogram classification

计算机科学 人工智能 乳腺摄影术 计算机辅助设计 模式识别(心理学) 计算机辅助诊断 人工神经网络 乳腺癌 深度学习 机器学习 癌症 医学 工程制图 内科学 工程类
作者
Lili Xia,Jianpeng An,Chao Ma,Hongjun Hou,Yanpeng Hou,Linyang Cui,Xuheng Jiang,Wanqing Li,Zhongke Gao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:536: 21-29 被引量:14
标识
DOI:10.1016/j.neucom.2023.03.028
摘要

Mammography is an important screening criterion for breast cancer, one of the major diseases causing numerous deaths among female patients. Meanwhile, manual diagnosis of mammography is a time-consuming and labor-consuming job. Mammogram classification based on deep learning plays a vital role in computer-aided diagnosis (CAD) systems to mitigate the pressure on physicians. This paper proposes a learning-based multi-view mammogram classification model that captures long-distance dependence and extracts features of multiple receptive fields. Our model considers global and local features of mammography images using Transformer for global features and the proposed multiplex convolutions module for local features. We evaluate our proposed method on a dataset of mammography images obtained from a hospital in China. The proposed method achieves 90.57% accuracy and 94.86% AUC in benign or malignant classification tasks and outperforms other advanced methods for mammogram classification. It is worth noting that the proposed method only requires image-level labels and acts on the whole raw mammogram, which has clinical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助执着过客采纳,获得10
刚刚
sanages完成签到,获得积分10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
帅气抽屉完成签到,获得积分10
1秒前
2秒前
now发布了新的文献求助10
3秒前
Hello应助辛勤夜柳采纳,获得10
3秒前
3秒前
3秒前
ycyang发布了新的文献求助10
4秒前
4秒前
上善若水完成签到 ,获得积分10
4秒前
lixxx发布了新的文献求助10
4秒前
urassaya给urassaya的求助进行了留言
5秒前
VANGOGH完成签到,获得积分20
5秒前
6秒前
qinyi完成签到,获得积分10
6秒前
zoie0809完成签到,获得积分10
6秒前
6秒前
7秒前
lhk发布了新的文献求助10
7秒前
8秒前
8秒前
VANGOGH发布了新的文献求助20
8秒前
ding应助合适惊蛰采纳,获得10
8秒前
1111应助landewen采纳,获得10
9秒前
zhaomr完成签到,获得积分10
9秒前
LJQ发布了新的文献求助10
9秒前
9秒前
10秒前
科研通AI5应助伯。采纳,获得30
10秒前
Draeck发布了新的文献求助10
11秒前
CTCTCT6发布了新的文献求助10
11秒前
11秒前
11秒前
聪慧小霜应助Star1983采纳,获得10
12秒前
12秒前
haveatry发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577232
求助须知:如何正确求助?哪些是违规求助? 3996368
关于积分的说明 12372376
捐赠科研通 3670475
什么是DOI,文献DOI怎么找? 2022811
邀请新用户注册赠送积分活动 1056944
科研通“疑难数据库(出版商)”最低求助积分说明 944026