Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助冷茗采纳,获得10
刚刚
调皮初蓝完成签到,获得积分10
刚刚
打打应助gwh采纳,获得10
刚刚
科研通AI5应助zmm采纳,获得10
刚刚
超级绫完成签到,获得积分10
1秒前
FangyingTang完成签到 ,获得积分10
1秒前
1秒前
1秒前
文章快快来完成签到,获得积分10
2秒前
Sherwin完成签到,获得积分10
2秒前
李健应助尊敬吐司采纳,获得10
2秒前
snnnn发布了新的文献求助10
2秒前
大模型应助Itsccy采纳,获得10
2秒前
2秒前
付大威完成签到,获得积分10
3秒前
许子健发布了新的文献求助10
3秒前
lx发布了新的文献求助10
3秒前
科研小白完成签到,获得积分10
3秒前
想毕业发布了新的文献求助20
3秒前
八格牙路发布了新的文献求助10
3秒前
lan完成签到,获得积分10
4秒前
牧之关注了科研通微信公众号
4秒前
汝桢完成签到,获得积分10
5秒前
5秒前
上上签完成签到,获得积分10
6秒前
6秒前
搜集达人应助感动又晴采纳,获得10
6秒前
清脆惜寒应助倚歌采纳,获得10
7秒前
june发布了新的文献求助10
7秒前
芬芬发布了新的文献求助10
7秒前
韧战发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
脑洞疼应助亓大大采纳,获得10
10秒前
大个应助snnnn采纳,获得10
11秒前
灰烬使者完成签到,获得积分20
12秒前
八格牙路完成签到,获得积分10
12秒前
12秒前
、、、发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646