Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
沐沐发布了新的文献求助10
1秒前
JG发布了新的文献求助10
1秒前
MFDL完成签到,获得积分10
1秒前
yb716发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
唯为完成签到,获得积分10
2秒前
恋恋发布了新的文献求助10
2秒前
3秒前
3秒前
balko发布了新的文献求助10
4秒前
李慧敏完成签到,获得积分10
4秒前
我是老大应助一一采纳,获得10
4秒前
虚心的沅发布了新的文献求助10
4秒前
5秒前
映寒应助Angie采纳,获得10
5秒前
蓟菏为衣发布了新的文献求助10
5秒前
甜北枳发布了新的文献求助10
5秒前
yumo发布了新的文献求助10
6秒前
豆兼米发布了新的文献求助10
6秒前
7秒前
桐桐应助Yags采纳,获得10
7秒前
故事的小红花完成签到,获得积分10
7秒前
Orange应助MFDL采纳,获得10
7秒前
7秒前
dayu发布了新的文献求助10
8秒前
珊珊来迟完成签到,获得积分10
8秒前
周旭完成签到,获得积分20
8秒前
9秒前
秋殤发布了新的文献求助10
9秒前
Wuc发布了新的文献求助10
9秒前
cmcm发布了新的文献求助10
9秒前
zyj完成签到,获得积分10
10秒前
英姑应助GLv采纳,获得10
10秒前
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801