Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助神奇的海螺采纳,获得10
刚刚
十一发布了新的文献求助10
刚刚
ATOM发布了新的文献求助10
刚刚
1秒前
honger发布了新的文献求助10
1秒前
万事胜意完成签到 ,获得积分10
1秒前
科研通AI6应助默默的青旋采纳,获得30
2秒前
隐形曼青应助小台采纳,获得10
2秒前
2秒前
ruarua发布了新的文献求助10
3秒前
斩荆披棘发布了新的文献求助10
3秒前
Selenaxue完成签到,获得积分10
3秒前
舒适太阳发布了新的文献求助10
4秒前
我是老大应助4444采纳,获得10
4秒前
绿颜色完成签到 ,获得积分10
4秒前
allenwu完成签到,获得积分20
4秒前
语音与发布了新的文献求助10
5秒前
5秒前
5秒前
余如龙完成签到,获得积分10
5秒前
生生不息完成签到,获得积分10
5秒前
CCsci完成签到 ,获得积分10
5秒前
科研通AI2S应助asdfqwer采纳,获得10
5秒前
冷艳的纸鹤完成签到,获得积分10
5秒前
newboy_wxs完成签到,获得积分10
5秒前
利好完成签到 ,获得积分10
6秒前
ATOM完成签到,获得积分20
6秒前
zuojiayu关注了科研通微信公众号
7秒前
sunshitao发布了新的文献求助30
7秒前
媛媛完成签到 ,获得积分10
7秒前
7秒前
Stella应助tdtk采纳,获得30
8秒前
8秒前
爱学习的飞翔人完成签到,获得积分10
8秒前
8秒前
鲤鱼荔枝发布了新的文献求助10
8秒前
辛勤誉完成签到 ,获得积分10
9秒前
耳东完成签到,获得积分10
9秒前
9秒前
哭泣藏花完成签到 ,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337738
求助须知:如何正确求助?哪些是违规求助? 4474923
关于积分的说明 13926546
捐赠科研通 4369947
什么是DOI,文献DOI怎么找? 2401099
邀请新用户注册赠送积分活动 1394118
关于科研通互助平台的介绍 1366037