Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Iris完成签到 ,获得积分10
1秒前
QIANGYI完成签到 ,获得积分10
3秒前
滕隐完成签到 ,获得积分10
7秒前
13秒前
李国明发布了新的文献求助10
16秒前
mjc完成签到 ,获得积分10
19秒前
夏日香气完成签到 ,获得积分10
19秒前
XYY完成签到,获得积分10
23秒前
张平一完成签到 ,获得积分10
25秒前
方圆完成签到 ,获得积分10
26秒前
Kiki完成签到 ,获得积分10
26秒前
阳光刺眼完成签到 ,获得积分10
27秒前
27秒前
Ezio_sunhao完成签到,获得积分10
29秒前
晚意完成签到 ,获得积分10
33秒前
天天快乐应助李国明采纳,获得30
34秒前
MchemG应助ho采纳,获得30
36秒前
xinxiangshicheng完成签到 ,获得积分10
42秒前
活力的妙之完成签到 ,获得积分10
46秒前
zydaphne完成签到 ,获得积分10
46秒前
50秒前
十五完成签到,获得积分10
51秒前
ddn发布了新的文献求助10
54秒前
陆离完成签到 ,获得积分10
57秒前
寻桃阿玉完成签到 ,获得积分10
57秒前
笨笨摇伽完成签到,获得积分10
59秒前
xu完成签到 ,获得积分10
1分钟前
深情安青应助ddn采纳,获得10
1分钟前
1分钟前
充电宝应助寻桃阿玉采纳,获得10
1分钟前
1分钟前
1分钟前
晶晶宝贝的完成签到 ,获得积分10
1分钟前
煮梅发布了新的文献求助30
1分钟前
Kunning完成签到 ,获得积分10
1分钟前
xfxzy应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
修仙中应助科研通管家采纳,获得10
1分钟前
修仙中应助科研通管家采纳,获得10
1分钟前
那时花开应助科研通管家采纳,获得10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591