Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 语义学(计算机科学) 对抗制 人工智能 深度学习 情态动词 理论计算机科学 计算机安全 程序设计语言 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:2
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker’s specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kenneyhahaha发布了新的文献求助10
刚刚
于锦程完成签到,获得积分10
刚刚
刚刚
shelly完成签到,获得积分10
1秒前
从容小虾米完成签到 ,获得积分10
2秒前
心里的种子完成签到 ,获得积分10
2秒前
缓缓面发布了新的文献求助10
2秒前
chayue完成签到,获得积分10
3秒前
丹妮发布了新的文献求助10
3秒前
Yziii应助YuGe采纳,获得20
5秒前
Fizz完成签到,获得积分10
5秒前
这个硬盘完成签到 ,获得积分10
6秒前
yang完成签到,获得积分10
6秒前
shelly发布了新的文献求助10
6秒前
脑洞疼应助Minerva采纳,获得10
7秒前
8秒前
共享精神应助郝宝真采纳,获得10
9秒前
一目完成签到,获得积分10
10秒前
zss完成签到 ,获得积分10
12秒前
13秒前
15秒前
从容芮应助健忘天问采纳,获得10
16秒前
科研通AI2S应助史道夫采纳,获得10
16秒前
sxiao18应助史道夫采纳,获得10
16秒前
科研通AI2S应助史道夫采纳,获得10
16秒前
chriselva应助史道夫采纳,获得10
16秒前
孙意冉发布了新的文献求助10
17秒前
打工是不可能打工的完成签到 ,获得积分10
18秒前
18秒前
酷炫迎波完成签到,获得积分10
19秒前
科目三应助缓慢的紫伊采纳,获得30
19秒前
可爱的念薇关注了科研通微信公众号
19秒前
邓怡发布了新的文献求助10
20秒前
祈愿发布了新的文献求助10
20秒前
梦想完成签到,获得积分10
21秒前
kxy完成签到,获得积分10
23秒前
熊大完成签到,获得积分10
23秒前
Bob222完成签到,获得积分10
23秒前
星期一完成签到,获得积分10
23秒前
田様应助乌拉拉啦啦啦采纳,获得10
23秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587