Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐羽发布了新的文献求助10
1秒前
sss发布了新的文献求助10
2秒前
2秒前
斑马兽发布了新的文献求助10
2秒前
雷晨晨发布了新的文献求助10
3秒前
3秒前
xlttt完成签到,获得积分10
3秒前
所所应助呆熊采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助黑石采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
虫子发布了新的文献求助10
7秒前
追寻紫安发布了新的文献求助10
7秒前
赘婿应助wang采纳,获得10
8秒前
静oo发布了新的文献求助10
8秒前
一首歌的时间完成签到,获得积分10
9秒前
LLLLLL发布了新的文献求助10
9秒前
10秒前
苹果唇彩发布了新的文献求助10
10秒前
LL完成签到,获得积分10
11秒前
11秒前
酷波er应助LY采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
浮游应助王莫为采纳,获得10
12秒前
12秒前
Rjy发布了新的文献求助10
12秒前
Jasper应助斑马兽采纳,获得10
12秒前
Jeff发布了新的文献求助10
12秒前
12秒前
13秒前
Jasper应助mieyy采纳,获得10
13秒前
pcr163应助坦呐采纳,获得50
13秒前
13秒前
bkagyin应助跳跃的洪纲采纳,获得10
14秒前
14秒前
无花果应助淡淡智宸采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016604
求助须知:如何正确求助?哪些是违规求助? 4256659
关于积分的说明 13265528
捐赠科研通 4060614
什么是DOI,文献DOI怎么找? 2220941
邀请新用户注册赠送积分活动 1230246
关于科研通互助平台的介绍 1152831