Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haixin完成签到,获得积分10
刚刚
前行的灿完成签到 ,获得积分10
刚刚
刚刚
1秒前
张一诺021222完成签到,获得积分10
1秒前
F123456完成签到,获得积分10
2秒前
3秒前
GankhuyagJavzan完成签到,获得积分10
4秒前
Majiko完成签到,获得积分10
4秒前
小鱼发布了新的文献求助10
6秒前
6秒前
大气乐儿完成签到,获得积分10
7秒前
Luffy完成签到,获得积分10
7秒前
深情安青应助合适否而非采纳,获得10
7秒前
7秒前
zxxx完成签到,获得积分10
7秒前
lu_zhqi发布了新的文献求助10
8秒前
8秒前
摸鱼仙人完成签到,获得积分10
9秒前
小昼完成签到 ,获得积分10
9秒前
10秒前
顾矜应助里里采纳,获得10
10秒前
qianyu完成签到,获得积分10
10秒前
王小龙发布了新的文献求助10
10秒前
Jasper应助zhijiu采纳,获得10
10秒前
哈哈队长2号完成签到,获得积分10
10秒前
10秒前
晨曦完成签到,获得积分10
11秒前
11秒前
dd完成签到,获得积分10
11秒前
11秒前
标致的冷梅完成签到,获得积分10
12秒前
chenyu完成签到,获得积分10
12秒前
zlh0发布了新的文献求助10
13秒前
幽默的山雁完成签到,获得积分10
13秒前
14秒前
朱迪完成签到 ,获得积分10
14秒前
Ava应助不要引力采纳,获得10
14秒前
huang完成签到,获得积分10
14秒前
JC完成签到,获得积分10
15秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387611
求助须知:如何正确求助?哪些是违规求助? 4509621
关于积分的说明 14032074
捐赠科研通 4420457
什么是DOI,文献DOI怎么找? 2428263
邀请新用户注册赠送积分活动 1420857
关于科研通互助平台的介绍 1400038