Prediction of heating and cooling loads based on light gradient boosting machine algorithms

随机森林 平均绝对百分比误差 均方误差 特征选择 梯度升压 机器学习 人工智能 算法 计算机科学 超参数优化 冷负荷 数学 统计 支持向量机 工程类 机械工程 空调
作者
Jiaxin Guo,Sining Yun,Yao Meng,Ning He,Dongfu Ye,Zeni Zhao,Lingyun Jia,Yang Liu
出处
期刊:Building and Environment [Elsevier]
卷期号:236: 110252-110252 被引量:8
标识
DOI:10.1016/j.buildenv.2023.110252
摘要

Machine learning models have been widely used to study the prediction of heating and cooling loads in residential buildings. However, most of these methods use the default hyperparameters, resulting in inaccurate prediction accuracy. In this work, based on hyperparametric optimization algorithms of random search (Random), grid search (Grid), covariance matrix adaptive evolution strategy (CMA-ES), and tree-structured parzen estimator (TPE), were combined with the light gradient boosting machine (LightGBM) model, to construct four hybrid models (Random-LightGBM, Grid-LightGBM, CMA-ES-LightGBM and TPE-LightGBM) for improved prediction accuracy of heating and cooling loads. The LightGBM model was trained using a dataset consisting of building features, cooling set points, and occupant behavior parameters. Feature selection was performed by a random forest-based feature selection method, which determines the input features of the load prediction model. The TPE- LightGBM model achieved the best prediction accuracy among all proposed models with a root mean square error (RMSE) of 0.2714, mean absolute error (MAE) of 0.1416, coefficient of determination (R2) of 0.9981, and mean absolute percentage error (MAPE) of 0.4699% for heating load prediction, and RMSE of 0.1901, MAE of 0.1394, R2 of 0.9924, and MAPE of 2.3509% for cooling load prediction. The proposed TPE-LightGBM model provides an efficient strategy for predicting heating and cooling loads, which can provide better energy efficiency measures at the early design stages of residential buildings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的线虫完成签到,获得积分10
1秒前
研友_VZG7GZ应助小白大当家采纳,获得10
3秒前
5秒前
Xifandoufu完成签到,获得积分10
5秒前
wsg完成签到,获得积分10
6秒前
6秒前
10秒前
10秒前
10秒前
好纠结完成签到,获得积分10
10秒前
蒲公英发布了新的文献求助10
11秒前
今后应助FartKing采纳,获得10
11秒前
YYT完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
sunboy14521完成签到 ,获得积分10
13秒前
13秒前
13秒前
憩在云端完成签到,获得积分10
13秒前
14秒前
mlle完成签到,获得积分10
15秒前
15秒前
16秒前
花小研完成签到 ,获得积分10
16秒前
帅气的襄发布了新的文献求助10
17秒前
顺利平文发布了新的文献求助10
17秒前
17秒前
烂漫土豆完成签到,获得积分10
18秒前
Jehuw完成签到,获得积分10
18秒前
玉宝儿发布了新的文献求助10
18秒前
1111发布了新的文献求助10
18秒前
科研通AI2S应助sunxin采纳,获得10
19秒前
20秒前
fanfan44390完成签到,获得积分10
21秒前
帅气的襄完成签到,获得积分20
22秒前
顺利平文完成签到,获得积分20
23秒前
梦汐moxi完成签到,获得积分10
23秒前
24秒前
完全X从完成签到,获得积分20
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325