Prediction of heating and cooling loads based on light gradient boosting machine algorithms

随机森林 平均绝对百分比误差 均方误差 特征选择 梯度升压 机器学习 人工智能 算法 计算机科学 超参数优化 冷负荷 数学 统计 支持向量机 工程类 空调 机械工程
作者
Jiaxin Guo,Sining Yun,Yao Meng,Ning He,Dongfu Ye,Zeni Zhao,Lingyun Jia,Yang Liu
出处
期刊:Building and Environment [Elsevier]
卷期号:236: 110252-110252 被引量:8
标识
DOI:10.1016/j.buildenv.2023.110252
摘要

Machine learning models have been widely used to study the prediction of heating and cooling loads in residential buildings. However, most of these methods use the default hyperparameters, resulting in inaccurate prediction accuracy. In this work, based on hyperparametric optimization algorithms of random search (Random), grid search (Grid), covariance matrix adaptive evolution strategy (CMA-ES), and tree-structured parzen estimator (TPE), were combined with the light gradient boosting machine (LightGBM) model, to construct four hybrid models (Random-LightGBM, Grid-LightGBM, CMA-ES-LightGBM and TPE-LightGBM) for improved prediction accuracy of heating and cooling loads. The LightGBM model was trained using a dataset consisting of building features, cooling set points, and occupant behavior parameters. Feature selection was performed by a random forest-based feature selection method, which determines the input features of the load prediction model. The TPE- LightGBM model achieved the best prediction accuracy among all proposed models with a root mean square error (RMSE) of 0.2714, mean absolute error (MAE) of 0.1416, coefficient of determination (R2) of 0.9981, and mean absolute percentage error (MAPE) of 0.4699% for heating load prediction, and RMSE of 0.1901, MAE of 0.1394, R2 of 0.9924, and MAPE of 2.3509% for cooling load prediction. The proposed TPE-LightGBM model provides an efficient strategy for predicting heating and cooling loads, which can provide better energy efficiency measures at the early design stages of residential buildings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的小朋友完成签到,获得积分10
1秒前
FashionBoy应助shenhongru采纳,获得10
1秒前
QQQ完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
斯文败类应助WEAWEA采纳,获得10
5秒前
5秒前
6秒前
科研通AI2S应助如意的冰双采纳,获得10
7秒前
能干的问晴完成签到,获得积分10
8秒前
miemie66发布了新的文献求助10
8秒前
香芋完成签到 ,获得积分10
8秒前
nihao发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
韩野发布了新的文献求助10
13秒前
山海完成签到,获得积分10
13秒前
penpen发布了新的文献求助10
13秒前
14秒前
张芃尧完成签到,获得积分20
15秒前
天天快乐应助CHEN采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
SciGPT应助hearz采纳,获得10
17秒前
17秒前
孙元应助zzz采纳,获得10
18秒前
18秒前
元谷雪发布了新的文献求助10
19秒前
英姑应助Vizz采纳,获得10
19秒前
起个名真难完成签到,获得积分10
19秒前
幻影完成签到 ,获得积分10
19秒前
ayintree完成签到,获得积分10
20秒前
20秒前
小蘑菇应助mm采纳,获得10
20秒前
Nan发布了新的文献求助200
20秒前
22秒前
打工人发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233