Prediction of heating and cooling loads based on light gradient boosting machine algorithms

随机森林 平均绝对百分比误差 均方误差 特征选择 梯度升压 机器学习 人工智能 算法 计算机科学 超参数优化 冷负荷 数学 统计 支持向量机 工程类 空调 机械工程
作者
Jiaxin Guo,Sining Yun,Yao Meng,Ning He,Dongfu Ye,Zeni Zhao,Lingyun Jia,Yang Liu
出处
期刊:Building and Environment [Elsevier BV]
卷期号:236: 110252-110252 被引量:8
标识
DOI:10.1016/j.buildenv.2023.110252
摘要

Machine learning models have been widely used to study the prediction of heating and cooling loads in residential buildings. However, most of these methods use the default hyperparameters, resulting in inaccurate prediction accuracy. In this work, based on hyperparametric optimization algorithms of random search (Random), grid search (Grid), covariance matrix adaptive evolution strategy (CMA-ES), and tree-structured parzen estimator (TPE), were combined with the light gradient boosting machine (LightGBM) model, to construct four hybrid models (Random-LightGBM, Grid-LightGBM, CMA-ES-LightGBM and TPE-LightGBM) for improved prediction accuracy of heating and cooling loads. The LightGBM model was trained using a dataset consisting of building features, cooling set points, and occupant behavior parameters. Feature selection was performed by a random forest-based feature selection method, which determines the input features of the load prediction model. The TPE- LightGBM model achieved the best prediction accuracy among all proposed models with a root mean square error (RMSE) of 0.2714, mean absolute error (MAE) of 0.1416, coefficient of determination (R2) of 0.9981, and mean absolute percentage error (MAPE) of 0.4699% for heating load prediction, and RMSE of 0.1901, MAE of 0.1394, R2 of 0.9924, and MAPE of 2.3509% for cooling load prediction. The proposed TPE-LightGBM model provides an efficient strategy for predicting heating and cooling loads, which can provide better energy efficiency measures at the early design stages of residential buildings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助个性的振家采纳,获得10
刚刚
qq发布了新的文献求助10
1秒前
2秒前
杨建明完成签到,获得积分10
3秒前
难过的丹烟完成签到,获得积分10
4秒前
4秒前
火星上立果完成签到,获得积分10
4秒前
咩咩完成签到,获得积分10
4秒前
5秒前
斯文败类应助蝶步韶华采纳,获得10
5秒前
hyg完成签到,获得积分20
5秒前
糊涂生活糊涂过完成签到 ,获得积分10
6秒前
思源应助鹿时wan采纳,获得10
9秒前
李沐唅发布了新的文献求助10
10秒前
10秒前
11秒前
zyzy完成签到,获得积分20
11秒前
11秒前
lbm发布了新的文献求助10
11秒前
毛头发布了新的文献求助10
13秒前
zsq发布了新的文献求助10
16秒前
lc完成签到,获得积分10
16秒前
ZZZ发布了新的文献求助10
16秒前
Anoxia发布了新的文献求助10
16秒前
17秒前
18秒前
lbm完成签到,获得积分10
19秒前
qq完成签到,获得积分10
21秒前
周周发布了新的文献求助10
22秒前
FartKing发布了新的文献求助10
25秒前
27秒前
27秒前
浮游完成签到,获得积分0
27秒前
28秒前
爆米花应助CLMY采纳,获得10
30秒前
32秒前
33秒前
可爱的函函应助FartKing采纳,获得10
34秒前
leilei发布了新的文献求助30
34秒前
hahhhah完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258754
求助须知:如何正确求助?哪些是违规求助? 4420666
关于积分的说明 13760892
捐赠科研通 4294359
什么是DOI,文献DOI怎么找? 2356356
邀请新用户注册赠送积分活动 1352717
关于科研通互助平台的介绍 1313631