Development and validation of a multiphase CT radiomics nomogram for the preoperative prediction of lymphovascular invasion in patients with gastric cancer

医学 列线图 无线电技术 淋巴血管侵犯 单变量 癌症 放射科 多元分析 单变量分析 多元统计 肿瘤科 核医学 内科学 转移 机器学习 计算机科学
作者
Qinyu Guo,Qian Sun,Xuelian Bian,Manya Wang,Hongli Dong,Hongkun Yin,Xiaoxiao Dai,Guohua Fan,G. Chen
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:78 (8): e552-e559 被引量:4
标识
DOI:10.1016/j.crad.2023.03.016
摘要

•Tumor location, cT category and cN category were independent risk factors of LVI. •Five models: clinical model, AP model, VP model, DP model and nomogram. •The nomogram based on clinical risk factors and radiomics features performed well. AIM To develop a nomogram to predict lymphovascular invasion (LVI) in gastric cancer by integrating multiphase computed tomography (CT) radiomics and clinical risk factors. MATERIALS AND METHODS One hundred and seventy-two gastric cancer patients (121 training and 51 validation) with preoperative contrast-enhanced CT images and clinicopathological data were collected retrospectively. The clinical risk factors were selected by univariate and multivariate regression analysis. Radiomic features were extracted and selected from the arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images of each patient. Clinical risk factors, radiomic features, and integration of both were used to develop the clinical model, radiomic models, and nomogram, respectively. RESULTS Radiomic features from AP (n=6), VP (n=6), DP (n=7) CT images and three selected clinical risk factors were used for model development. The nomogram showed better performance than the AP, VP, DP, and clinical models in the training and validation datasets, providing areas under the curves (AUCs) of 0.890 (95% CI: 0.820–0.940) and 0.885 (95% CI:0.765–0.957), respectively. All models indicated good calibration, and decision curve analysis proved that the net benefit of the nomogram was superior to that of the clinical and radiomic models throughout the vast majority of the threshold probabilities. CONCLUSIONS The nomogram integrating multiphase CT radiomics and clinical risk factors showed favourable performance in predicting LVI of gastric cancer, which may benefit clinical practice. To develop a nomogram to predict lymphovascular invasion (LVI) in gastric cancer by integrating multiphase computed tomography (CT) radiomics and clinical risk factors. One hundred and seventy-two gastric cancer patients (121 training and 51 validation) with preoperative contrast-enhanced CT images and clinicopathological data were collected retrospectively. The clinical risk factors were selected by univariate and multivariate regression analysis. Radiomic features were extracted and selected from the arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images of each patient. Clinical risk factors, radiomic features, and integration of both were used to develop the clinical model, radiomic models, and nomogram, respectively. Radiomic features from AP (n=6), VP (n=6), DP (n=7) CT images and three selected clinical risk factors were used for model development. The nomogram showed better performance than the AP, VP, DP, and clinical models in the training and validation datasets, providing areas under the curves (AUCs) of 0.890 (95% CI: 0.820–0.940) and 0.885 (95% CI:0.765–0.957), respectively. All models indicated good calibration, and decision curve analysis proved that the net benefit of the nomogram was superior to that of the clinical and radiomic models throughout the vast majority of the threshold probabilities. The nomogram integrating multiphase CT radiomics and clinical risk factors showed favourable performance in predicting LVI of gastric cancer, which may benefit clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听寒完成签到,获得积分10
2秒前
波波完成签到 ,获得积分10
4秒前
钟小先生完成签到 ,获得积分10
4秒前
23333完成签到,获得积分10
14秒前
李思雨完成签到 ,获得积分10
16秒前
李健应助学术裁缝采纳,获得10
20秒前
TiAmo完成签到 ,获得积分10
25秒前
你好完成签到 ,获得积分10
28秒前
NaHe发布了新的文献求助10
31秒前
纯真的德地完成签到 ,获得积分10
33秒前
倪妮完成签到 ,获得积分10
34秒前
verymiao完成签到 ,获得积分10
39秒前
震动的鹏飞完成签到 ,获得积分10
43秒前
夜雨完成签到 ,获得积分10
45秒前
我要读博士完成签到 ,获得积分10
50秒前
吃吃吃不敢吃完成签到 ,获得积分10
51秒前
Hello应助陈俊超采纳,获得10
52秒前
美梦成真完成签到 ,获得积分10
55秒前
张天宝真的爱科研完成签到,获得积分10
55秒前
张张完成签到 ,获得积分10
59秒前
1分钟前
zhangsan完成签到,获得积分10
1分钟前
1分钟前
O_O完成签到 ,获得积分10
1分钟前
羽冰酒完成签到 ,获得积分10
1分钟前
yuan1226完成签到 ,获得积分10
1分钟前
无情颖完成签到 ,获得积分10
1分钟前
居居侠完成签到 ,获得积分10
1分钟前
陈俊超发布了新的文献求助10
1分钟前
猫小乐C发布了新的文献求助10
1分钟前
NaHe完成签到 ,获得积分10
1分钟前
平方完成签到,获得积分10
1分钟前
1分钟前
学术裁缝完成签到,获得积分10
1分钟前
1分钟前
猫小乐C完成签到,获得积分10
1分钟前
来了来了完成签到 ,获得积分10
1分钟前
1分钟前
xdd完成签到 ,获得积分10
1分钟前
尤瑟夫完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212260
求助须知:如何正确求助?哪些是违规求助? 4388486
关于积分的说明 13663975
捐赠科研通 4248949
什么是DOI,文献DOI怎么找? 2331279
邀请新用户注册赠送积分活动 1328982
关于科研通互助平台的介绍 1282336