重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Development and validation of a multiphase CT radiomics nomogram for the preoperative prediction of lymphovascular invasion in patients with gastric cancer

医学 列线图 无线电技术 淋巴血管侵犯 单变量 癌症 放射科 多元分析 单变量分析 多元统计 肿瘤科 核医学 内科学 转移 机器学习 计算机科学
作者
Qinyu Guo,Qian Sun,Xuelian Bian,Manya Wang,Hongli Dong,Hongkun Yin,Xiaoxiao Dai,Guohua Fan,G. Chen
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (8): e552-e559 被引量:4
标识
DOI:10.1016/j.crad.2023.03.016
摘要

•Tumor location, cT category and cN category were independent risk factors of LVI. •Five models: clinical model, AP model, VP model, DP model and nomogram. •The nomogram based on clinical risk factors and radiomics features performed well. AIM To develop a nomogram to predict lymphovascular invasion (LVI) in gastric cancer by integrating multiphase computed tomography (CT) radiomics and clinical risk factors. MATERIALS AND METHODS One hundred and seventy-two gastric cancer patients (121 training and 51 validation) with preoperative contrast-enhanced CT images and clinicopathological data were collected retrospectively. The clinical risk factors were selected by univariate and multivariate regression analysis. Radiomic features were extracted and selected from the arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images of each patient. Clinical risk factors, radiomic features, and integration of both were used to develop the clinical model, radiomic models, and nomogram, respectively. RESULTS Radiomic features from AP (n=6), VP (n=6), DP (n=7) CT images and three selected clinical risk factors were used for model development. The nomogram showed better performance than the AP, VP, DP, and clinical models in the training and validation datasets, providing areas under the curves (AUCs) of 0.890 (95% CI: 0.820–0.940) and 0.885 (95% CI:0.765–0.957), respectively. All models indicated good calibration, and decision curve analysis proved that the net benefit of the nomogram was superior to that of the clinical and radiomic models throughout the vast majority of the threshold probabilities. CONCLUSIONS The nomogram integrating multiphase CT radiomics and clinical risk factors showed favourable performance in predicting LVI of gastric cancer, which may benefit clinical practice. To develop a nomogram to predict lymphovascular invasion (LVI) in gastric cancer by integrating multiphase computed tomography (CT) radiomics and clinical risk factors. One hundred and seventy-two gastric cancer patients (121 training and 51 validation) with preoperative contrast-enhanced CT images and clinicopathological data were collected retrospectively. The clinical risk factors were selected by univariate and multivariate regression analysis. Radiomic features were extracted and selected from the arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images of each patient. Clinical risk factors, radiomic features, and integration of both were used to develop the clinical model, radiomic models, and nomogram, respectively. Radiomic features from AP (n=6), VP (n=6), DP (n=7) CT images and three selected clinical risk factors were used for model development. The nomogram showed better performance than the AP, VP, DP, and clinical models in the training and validation datasets, providing areas under the curves (AUCs) of 0.890 (95% CI: 0.820–0.940) and 0.885 (95% CI:0.765–0.957), respectively. All models indicated good calibration, and decision curve analysis proved that the net benefit of the nomogram was superior to that of the clinical and radiomic models throughout the vast majority of the threshold probabilities. The nomogram integrating multiphase CT radiomics and clinical risk factors showed favourable performance in predicting LVI of gastric cancer, which may benefit clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梨涡宝宝完成签到 ,获得积分10
1秒前
果粒红豆豆完成签到 ,获得积分10
2秒前
科研通AI6应助姜且采纳,获得10
2秒前
2秒前
3秒前
妮可粒子发布了新的文献求助10
3秒前
九次方完成签到,获得积分10
3秒前
无极微光应助凌泉采纳,获得20
3秒前
tkdzjr12345发布了新的文献求助10
4秒前
快乐科研发布了新的文献求助20
4秒前
微笑幻波完成签到,获得积分10
4秒前
zql发布了新的文献求助10
4秒前
凶狠的画笔完成签到,获得积分10
5秒前
5秒前
老王发布了新的文献求助10
5秒前
juzi发布了新的文献求助10
6秒前
6秒前
7秒前
坦率完成签到,获得积分10
7秒前
霜序完成签到,获得积分10
7秒前
布拉德玛拉唐完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
盛清让发布了新的文献求助10
9秒前
浮若安生完成签到,获得积分10
9秒前
纳古菌完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
笑点低怀亦完成签到,获得积分10
11秒前
11秒前
11秒前
silent完成签到,获得积分10
11秒前
11秒前
卜逍遥发布了新的文献求助10
12秒前
12秒前
妮可粒子完成签到,获得积分10
12秒前
MrDI完成签到,获得积分10
12秒前
打打应助11采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467477
求助须知:如何正确求助?哪些是违规求助? 4571182
关于积分的说明 14329082
捐赠科研通 4497783
什么是DOI,文献DOI怎么找? 2464081
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427654