An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors

水质 环境科学 气候变化 溶解有机碳 遥感 水文学(农业) 海洋学 地质学 生态学 岩土工程 生物
作者
Hongwei Guo,Xiaotong Zhu,Jinhui Jeanne Huang‬‬‬‬,Zijie Zhang,Shang Tian,Yiheng Chen
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:620: 129466-129466 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.129466
摘要

Remote sensing has long been used for inland water quality monitoring. However, due to the complex correlation between water quality parameters (WQPs) and water optical properties, the interactions of WQPs, and the impacts of climate, using remote sensing reflectance (Rrs) to adequately estimate WQPs is still a grand challenge. Deep learning has the potential in capturing the correlation among Rrs, optically active constituents (OACs), and non-OACs, and is progressively used in remote sensing retrieval of inland water quality. In this study, the enhanced multimodal deep learning (EMDL) models were proposed for Chlorophyll-a, total phosphorous, total nitrogen, Secchi disk depth, dissolved organic carbon, and dissolved oxygen retrieval in Lake Simcoe (80 km north of Toronto, Canada). The EMDL models were developed and validated using the Rrs data derived from the harmonized Landsat and Sentinel-2 images, synchronized water quality measurements, water surface temperature, and climate data (N = 1173). The performance of the EMDL models was compared to that of several other machine learning, deep learning, and empirical models. Using the developed EMDL models, the spatial distributions and long-term variations of the WQPs in Lake Simcoe from 2013 to 2019 were reconstructed. The impacts of 12 potential natural and anthropogenic factors on the water quality of the entire Lake Simcoe and its two most concerned estuaries were also quantitatively discussed. The results showed that the EMDL models produced satisfactory performance in estimation of the six WQPs, with the Slope being close to 1 (0.84–0.95), normalized mean absolute error ≤20.17%, and Bias ≤14.68%. The EMDL models had the potential to reconstruct the spatial patterns and time-series dynamics of water quality and effectively detect the gradients of spatial patterns. This study provides a novel approach to supporting the environmental management and identification of the affecting factors for the Lake Simcoe watershed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助紫苑采纳,获得20
刚刚
PhDshi完成签到,获得积分10
1秒前
咩吖完成签到,获得积分10
1秒前
db完成签到,获得积分10
1秒前
1秒前
111发布了新的文献求助10
1秒前
852应助努力退休小博士采纳,获得30
1秒前
山楂发布了新的文献求助20
2秒前
2秒前
zh完成签到,获得积分10
3秒前
3秒前
4秒前
zhang发布了新的文献求助10
5秒前
难过的蜜粉完成签到,获得积分10
5秒前
多情的映波完成签到 ,获得积分10
7秒前
科目三应助一篇吃不饱采纳,获得10
7秒前
小梦完成签到,获得积分10
7秒前
znn发布了新的文献求助10
7秒前
zh发布了新的文献求助10
8秒前
zhangluhang完成签到,获得积分10
8秒前
细心蚂蚁完成签到,获得积分10
9秒前
10秒前
fifteen发布了新的文献求助10
10秒前
11秒前
小蘑菇应助JS采纳,获得10
11秒前
不安白易完成签到 ,获得积分10
13秒前
yjn完成签到,获得积分20
13秒前
14秒前
14秒前
Linda发布了新的文献求助10
14秒前
H0neYvia完成签到 ,获得积分10
15秒前
insane完成签到,获得积分20
16秒前
酷波er应助杨凡采纳,获得10
16秒前
小程同学发布了新的文献求助10
17秒前
山楂完成签到,获得积分10
18秒前
Owen应助0x1orz采纳,获得10
18秒前
完美世界应助zhang采纳,获得10
19秒前
yangts2021发布了新的文献求助10
19秒前
努力学习ing完成签到 ,获得积分10
20秒前
yjn发布了新的文献求助50
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068