An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors

水质 环境科学 气候变化 溶解有机碳 遥感 水文学(农业) 海洋学 地质学 生态学 生物 岩土工程
作者
Hongwei Guo,Xiaotong Zhu,Jinhui Jeanne Huang‬‬‬‬,Zijie Zhang,Shang Tian,Yiheng Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:620: 129466-129466 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.129466
摘要

Remote sensing has long been used for inland water quality monitoring. However, due to the complex correlation between water quality parameters (WQPs) and water optical properties, the interactions of WQPs, and the impacts of climate, using remote sensing reflectance (Rrs) to adequately estimate WQPs is still a grand challenge. Deep learning has the potential in capturing the correlation among Rrs, optically active constituents (OACs), and non-OACs, and is progressively used in remote sensing retrieval of inland water quality. In this study, the enhanced multimodal deep learning (EMDL) models were proposed for Chlorophyll-a, total phosphorous, total nitrogen, Secchi disk depth, dissolved organic carbon, and dissolved oxygen retrieval in Lake Simcoe (80 km north of Toronto, Canada). The EMDL models were developed and validated using the Rrs data derived from the harmonized Landsat and Sentinel-2 images, synchronized water quality measurements, water surface temperature, and climate data (N = 1173). The performance of the EMDL models was compared to that of several other machine learning, deep learning, and empirical models. Using the developed EMDL models, the spatial distributions and long-term variations of the WQPs in Lake Simcoe from 2013 to 2019 were reconstructed. The impacts of 12 potential natural and anthropogenic factors on the water quality of the entire Lake Simcoe and its two most concerned estuaries were also quantitatively discussed. The results showed that the EMDL models produced satisfactory performance in estimation of the six WQPs, with the Slope being close to 1 (0.84–0.95), normalized mean absolute error ≤20.17%, and Bias ≤14.68%. The EMDL models had the potential to reconstruct the spatial patterns and time-series dynamics of water quality and effectively detect the gradients of spatial patterns. This study provides a novel approach to supporting the environmental management and identification of the affecting factors for the Lake Simcoe watershed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cetomacrogol发布了新的文献求助30
1秒前
2秒前
su发布了新的文献求助10
3秒前
斯文败类应助饼饼采纳,获得10
3秒前
我是波少发布了新的文献求助10
3秒前
思源应助看看采纳,获得10
3秒前
木木完成签到,获得积分10
3秒前
无限向珊发布了新的文献求助10
3秒前
cat_head发布了新的文献求助10
3秒前
Sugar发布了新的文献求助10
3秒前
4秒前
ljy完成签到,获得积分20
4秒前
bkagyin应助aabb采纳,获得10
4秒前
5秒前
5秒前
走着走着就散了完成签到,获得积分10
6秒前
Hoshi关注了科研通微信公众号
7秒前
针不戳发布了新的文献求助10
7秒前
852应助林莹采纳,获得10
7秒前
烟花应助滕擎采纳,获得10
8秒前
8秒前
多喝水完成签到,获得积分10
8秒前
wangyizhuo完成签到,获得积分10
8秒前
9秒前
fu发布了新的文献求助10
9秒前
11秒前
baobao完成签到,获得积分10
11秒前
www发布了新的文献求助50
11秒前
11秒前
南汉高贵的陈皮完成签到 ,获得积分10
11秒前
mmm完成签到 ,获得积分10
11秒前
菠萝吹宝关注了科研通微信公众号
11秒前
希望天下0贩的0应助妮子采纳,获得10
12秒前
12秒前
12秒前
海珠完成签到 ,获得积分10
13秒前
13秒前
科研通AI5应助阳光映秋采纳,获得10
13秒前
happyboy2008完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587994
求助须知:如何正确求助?哪些是违规求助? 4003679
关于积分的说明 12394679
捐赠科研通 3680211
什么是DOI,文献DOI怎么找? 2028553
邀请新用户注册赠送积分活动 1062040
科研通“疑难数据库(出版商)”最低求助积分说明 948062