已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors

水质 环境科学 气候变化 溶解有机碳 遥感 水文学(农业) 海洋学 地质学 生态学 生物 岩土工程
作者
Hongwei Guo,Xiaotong Zhu,Jinhui Jeanne Huang‬‬‬‬,Zijie Zhang,Shang Tian,Yiheng Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:620: 129466-129466 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.129466
摘要

Remote sensing has long been used for inland water quality monitoring. However, due to the complex correlation between water quality parameters (WQPs) and water optical properties, the interactions of WQPs, and the impacts of climate, using remote sensing reflectance (Rrs) to adequately estimate WQPs is still a grand challenge. Deep learning has the potential in capturing the correlation among Rrs, optically active constituents (OACs), and non-OACs, and is progressively used in remote sensing retrieval of inland water quality. In this study, the enhanced multimodal deep learning (EMDL) models were proposed for Chlorophyll-a, total phosphorous, total nitrogen, Secchi disk depth, dissolved organic carbon, and dissolved oxygen retrieval in Lake Simcoe (80 km north of Toronto, Canada). The EMDL models were developed and validated using the Rrs data derived from the harmonized Landsat and Sentinel-2 images, synchronized water quality measurements, water surface temperature, and climate data (N = 1173). The performance of the EMDL models was compared to that of several other machine learning, deep learning, and empirical models. Using the developed EMDL models, the spatial distributions and long-term variations of the WQPs in Lake Simcoe from 2013 to 2019 were reconstructed. The impacts of 12 potential natural and anthropogenic factors on the water quality of the entire Lake Simcoe and its two most concerned estuaries were also quantitatively discussed. The results showed that the EMDL models produced satisfactory performance in estimation of the six WQPs, with the Slope being close to 1 (0.84–0.95), normalized mean absolute error ≤20.17%, and Bias ≤14.68%. The EMDL models had the potential to reconstruct the spatial patterns and time-series dynamics of water quality and effectively detect the gradients of spatial patterns. This study provides a novel approach to supporting the environmental management and identification of the affecting factors for the Lake Simcoe watershed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xieyusen发布了新的文献求助10
2秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
小稻草人应助科研通管家采纳,获得10
5秒前
FIN应助科研通管家采纳,获得20
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Lucas应助oceana采纳,获得10
7秒前
8531完成签到,获得积分10
7秒前
123456完成签到,获得积分10
11秒前
11秒前
12秒前
Dan发布了新的文献求助30
12秒前
所所应助祁尒采纳,获得10
13秒前
Tong发布了新的文献求助10
14秒前
蓝天白云发布了新的文献求助10
18秒前
18秒前
moncypool发布了新的文献求助10
19秒前
19秒前
无语大王完成签到,获得积分10
21秒前
孙子文发布了新的文献求助10
25秒前
优美的问凝完成签到 ,获得积分10
25秒前
25秒前
lvolt完成签到,获得积分10
26秒前
无喱酱发布了新的文献求助10
26秒前
不良帅完成签到,获得积分10
29秒前
29秒前
yydragen应助guojingjing采纳,获得10
30秒前
汉堡包应助阿秋秋秋采纳,获得10
30秒前
677完成签到,获得积分10
31秒前
啦啦啦完成签到 ,获得积分10
31秒前
欢欢完成签到,获得积分20
31秒前
oceana发布了新的文献求助10
31秒前
31秒前
dd完成签到 ,获得积分10
32秒前
34秒前
dnnnsns给dnnnsns的求助进行了留言
34秒前
啦啦啦关注了科研通微信公众号
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021