An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors

水质 环境科学 气候变化 溶解有机碳 遥感 水文学(农业) 海洋学 地质学 生态学 生物 岩土工程
作者
Hongwei Guo,Xiaotong Zhu,Jinhui Jeanne Huang‬‬‬‬,Zijie Zhang,Shang Tian,Yiheng Chen
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:620: 129466-129466 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.129466
摘要

Remote sensing has long been used for inland water quality monitoring. However, due to the complex correlation between water quality parameters (WQPs) and water optical properties, the interactions of WQPs, and the impacts of climate, using remote sensing reflectance (Rrs) to adequately estimate WQPs is still a grand challenge. Deep learning has the potential in capturing the correlation among Rrs, optically active constituents (OACs), and non-OACs, and is progressively used in remote sensing retrieval of inland water quality. In this study, the enhanced multimodal deep learning (EMDL) models were proposed for Chlorophyll-a, total phosphorous, total nitrogen, Secchi disk depth, dissolved organic carbon, and dissolved oxygen retrieval in Lake Simcoe (80 km north of Toronto, Canada). The EMDL models were developed and validated using the Rrs data derived from the harmonized Landsat and Sentinel-2 images, synchronized water quality measurements, water surface temperature, and climate data (N = 1173). The performance of the EMDL models was compared to that of several other machine learning, deep learning, and empirical models. Using the developed EMDL models, the spatial distributions and long-term variations of the WQPs in Lake Simcoe from 2013 to 2019 were reconstructed. The impacts of 12 potential natural and anthropogenic factors on the water quality of the entire Lake Simcoe and its two most concerned estuaries were also quantitatively discussed. The results showed that the EMDL models produced satisfactory performance in estimation of the six WQPs, with the Slope being close to 1 (0.84–0.95), normalized mean absolute error ≤20.17%, and Bias ≤14.68%. The EMDL models had the potential to reconstruct the spatial patterns and time-series dynamics of water quality and effectively detect the gradients of spatial patterns. This study provides a novel approach to supporting the environmental management and identification of the affecting factors for the Lake Simcoe watershed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
冰河蓝狮发布了新的文献求助10
刚刚
共享精神应助ai吃采纳,获得30
1秒前
qizhang完成签到,获得积分10
2秒前
2秒前
3秒前
内向的萃完成签到,获得积分20
4秒前
戏谑完成签到,获得积分10
4秒前
Lemon完成签到 ,获得积分10
4秒前
YM完成签到,获得积分10
6秒前
嘲风完成签到,获得积分10
6秒前
hjl发布了新的文献求助10
7秒前
leiyunfeng发布了新的文献求助10
7秒前
垚垚垚完成签到 ,获得积分10
7秒前
8秒前
ZJH完成签到 ,获得积分10
8秒前
浮游应助内向的萃采纳,获得10
10秒前
汉堡包应助嘲风采纳,获得10
11秒前
xxxx完成签到 ,获得积分10
13秒前
13秒前
14秒前
Mp4完成签到 ,获得积分10
14秒前
14秒前
欣喜的薯片完成签到 ,获得积分10
15秒前
15秒前
CodeCraft应助zhangkx23采纳,获得10
16秒前
18秒前
希望天下0贩的0应助ckx采纳,获得10
18秒前
小米发布了新的文献求助10
19秒前
SCI1区发布了新的文献求助10
19秒前
情怀应助热闹的冬天采纳,获得10
20秒前
20秒前
老福贵儿应助称心的板栗采纳,获得10
21秒前
栗西西完成签到,获得积分10
21秒前
21秒前
Mizuki完成签到,获得积分10
22秒前
雾海完成签到,获得积分10
22秒前
小雨点完成签到,获得积分10
22秒前
kkscanl完成签到 ,获得积分10
22秒前
柚子完成签到 ,获得积分10
23秒前
孔孔完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495177
求助须知:如何正确求助?哪些是违规求助? 4592877
关于积分的说明 14439094
捐赠科研通 4525740
什么是DOI,文献DOI怎么找? 2479654
邀请新用户注册赠送积分活动 1464467
关于科研通互助平台的介绍 1437333