An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors

水质 环境科学 气候变化 溶解有机碳 遥感 水文学(农业) 海洋学 地质学 生态学 生物 岩土工程
作者
Hongwei Guo,Xiaotong Zhu,Jinhui Jeanne Huang‬‬‬‬,Zijie Zhang,Shang Tian,Yiheng Chen
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:620: 129466-129466 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.129466
摘要

Remote sensing has long been used for inland water quality monitoring. However, due to the complex correlation between water quality parameters (WQPs) and water optical properties, the interactions of WQPs, and the impacts of climate, using remote sensing reflectance (Rrs) to adequately estimate WQPs is still a grand challenge. Deep learning has the potential in capturing the correlation among Rrs, optically active constituents (OACs), and non-OACs, and is progressively used in remote sensing retrieval of inland water quality. In this study, the enhanced multimodal deep learning (EMDL) models were proposed for Chlorophyll-a, total phosphorous, total nitrogen, Secchi disk depth, dissolved organic carbon, and dissolved oxygen retrieval in Lake Simcoe (80 km north of Toronto, Canada). The EMDL models were developed and validated using the Rrs data derived from the harmonized Landsat and Sentinel-2 images, synchronized water quality measurements, water surface temperature, and climate data (N = 1173). The performance of the EMDL models was compared to that of several other machine learning, deep learning, and empirical models. Using the developed EMDL models, the spatial distributions and long-term variations of the WQPs in Lake Simcoe from 2013 to 2019 were reconstructed. The impacts of 12 potential natural and anthropogenic factors on the water quality of the entire Lake Simcoe and its two most concerned estuaries were also quantitatively discussed. The results showed that the EMDL models produced satisfactory performance in estimation of the six WQPs, with the Slope being close to 1 (0.84–0.95), normalized mean absolute error ≤20.17%, and Bias ≤14.68%. The EMDL models had the potential to reconstruct the spatial patterns and time-series dynamics of water quality and effectively detect the gradients of spatial patterns. This study provides a novel approach to supporting the environmental management and identification of the affecting factors for the Lake Simcoe watershed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
2秒前
在水一方应助amanda采纳,获得10
3秒前
小鸟芋圆露露完成签到 ,获得积分0
3秒前
自信鞯完成签到,获得积分10
6秒前
修炼成绝完成签到,获得积分10
7秒前
第五轻柔完成签到,获得积分10
7秒前
mescal完成签到,获得积分10
8秒前
研友_Z7Xdl8完成签到,获得积分0
8秒前
8秒前
8秒前
可爱丸子完成签到,获得积分10
9秒前
Rinamamiya发布了新的文献求助50
9秒前
头上有犄角bb完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
pluto应助fafafa采纳,获得10
12秒前
14秒前
15秒前
15秒前
16秒前
璟晔完成签到,获得积分10
17秒前
19秒前
19秒前
醉熏的伊完成签到,获得积分10
20秒前
南歌子完成签到 ,获得积分10
21秒前
grass发布了新的文献求助10
21秒前
酥瓜完成签到 ,获得积分10
23秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
25秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
asdfzxcv应助科研通管家采纳,获得10
26秒前
asdfzxcv应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838