An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors

水质 环境科学 气候变化 溶解有机碳 遥感 水文学(农业) 海洋学 地质学 生态学 岩土工程 生物
作者
Hongwei Guo,Xiaotong Zhu,Jinhui Jeanne Huang‬‬‬‬,Zijie Zhang,Shang Tian,Yiheng Chen
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:620: 129466-129466 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.129466
摘要

Remote sensing has long been used for inland water quality monitoring. However, due to the complex correlation between water quality parameters (WQPs) and water optical properties, the interactions of WQPs, and the impacts of climate, using remote sensing reflectance (Rrs) to adequately estimate WQPs is still a grand challenge. Deep learning has the potential in capturing the correlation among Rrs, optically active constituents (OACs), and non-OACs, and is progressively used in remote sensing retrieval of inland water quality. In this study, the enhanced multimodal deep learning (EMDL) models were proposed for Chlorophyll-a, total phosphorous, total nitrogen, Secchi disk depth, dissolved organic carbon, and dissolved oxygen retrieval in Lake Simcoe (80 km north of Toronto, Canada). The EMDL models were developed and validated using the Rrs data derived from the harmonized Landsat and Sentinel-2 images, synchronized water quality measurements, water surface temperature, and climate data (N = 1173). The performance of the EMDL models was compared to that of several other machine learning, deep learning, and empirical models. Using the developed EMDL models, the spatial distributions and long-term variations of the WQPs in Lake Simcoe from 2013 to 2019 were reconstructed. The impacts of 12 potential natural and anthropogenic factors on the water quality of the entire Lake Simcoe and its two most concerned estuaries were also quantitatively discussed. The results showed that the EMDL models produced satisfactory performance in estimation of the six WQPs, with the Slope being close to 1 (0.84–0.95), normalized mean absolute error ≤20.17%, and Bias ≤14.68%. The EMDL models had the potential to reconstruct the spatial patterns and time-series dynamics of water quality and effectively detect the gradients of spatial patterns. This study provides a novel approach to supporting the environmental management and identification of the affecting factors for the Lake Simcoe watershed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123号发布了新的文献求助10
刚刚
Chen发布了新的文献求助10
1秒前
汉堡包应助caoyy采纳,获得10
1秒前
阳阳发布了新的文献求助10
1秒前
田所浩二完成签到 ,获得积分10
1秒前
1秒前
华仔应助奶糖采纳,获得30
2秒前
动力小滋完成签到,获得积分10
2秒前
ding应助瑶一瑶采纳,获得10
5秒前
fmwang完成签到,获得积分10
6秒前
万能图书馆应助Zxc采纳,获得10
6秒前
Rainbow完成签到,获得积分10
6秒前
小小郭完成签到 ,获得积分10
6秒前
8秒前
Orange应助务实的犀牛采纳,获得10
8秒前
追寻飞风完成签到,获得积分10
8秒前
wenli完成签到,获得积分10
9秒前
9秒前
10秒前
Schmoo完成签到,获得积分10
11秒前
13秒前
圆圆的脑袋应助涛浪采纳,获得10
14秒前
隐形曼青应助皮皮桂采纳,获得10
15秒前
凝子老师完成签到,获得积分10
15秒前
奶糖发布了新的文献求助30
15秒前
TORCH完成签到 ,获得积分10
17秒前
李健的小迷弟应助lin采纳,获得10
17秒前
17秒前
18秒前
TT发布了新的文献求助10
18秒前
奶糖完成签到,获得积分10
21秒前
丘比特应助浪迹天涯采纳,获得10
22秒前
24秒前
24秒前
虚幻白玉发布了新的文献求助10
25秒前
清客完成签到 ,获得积分10
25秒前
传奇3应助阳阳采纳,获得10
25秒前
27秒前
皮皮桂发布了新的文献求助10
27秒前
Hello应助无奈傲菡采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849