[Establishment and validation of clinical prediction model for steroid-resistant nephrotic syndrome in children].

医学 肾病综合征 逻辑回归 接收机工作特性 内科学 单变量分析 多元分析 比例危险模型 胃肠病学 儿科
作者
MD Haiyan Kou,F Wu,Xinyu Qu,H Wang,X T Guo,Y Y Yang,L J Zhao
出处
期刊:PubMed 卷期号:61 (4): 333-338
标识
DOI:10.3760/cma.j.cn112140-20220924-00837
摘要

Objective: To identify the clinically relevant factors of steroid-resistant nephrotic syndrome (SSNS) in children and establish a predictive model followed by verifying its feasibility. Methods: A retrospective analysis was performed in a total of 111 children with nephrotic syndrome admitted to Children's Hospital of ShanXi from January 2016 to December 2021. The clinical data of general conditions, manifestations, laboratory tests, treatment, and prognosis were collected. According to the steroid response, patients were divided into SSNS and steroid resistant nephrotic syndrome (SRNS) group. Single factor Logistic regression analysis was used for comparison between the 2 groups, and variables with statistically significant differences were included in multivariate Logistic regression analysis. The multivariate Logistic regression analysis was used to identify the related variables of children with SRNS. The area under the receiver operating characteristic curve (ROC), the calibration curve and the clinical decision curve were used to evaluate its effectiveness of the variables. Results: Totally 111 children with nephrotic syndrome was composed of 66 boys and 45 girls, aged 3.2 (2.0, 6.6) years. There were 65 patients in the SSNS group and 46 in the SRNS group.Univariate Logistic regression analysis showed that the 6 variables, including erythrocyte sedimentation rate, 25-hydroxyvitamin D, suppressor T cells, D-dimer, fibrin degradation products, β2-microglobulin, had statistically significant differences between SSNS and SRNS groups (85 (52, 104) vs. 105 (85, 120) mm/1 h, 18 (12, 39) vs. 16 (12, 25) nmol/L, 0.23 (0.19, 0.27) vs. 0.25 (0.20, 0.31), 0.7 (0.6, 1.1) vs. 1.1 (0.9, 1.7) g/L, 3.1 (2.3, 4.1) vs. 3.3 (2.7, 5.8) g/L, 2.3 (1.9,2.8) vs. 3.0 (2.5, 3.7) g/L, χ2=3.73, -2.42, 2.24, 3.38, 2.24,3.93,all P<0.05), were included in the multivariate Logistic regression analysis. Finally, we found that 4 variables including erythrocyte sedimentation rate, suppressor T cells, D-dimer and β2-microglobulin (OR=1.02, 1.12, 25.61, 3.38, 95%CI 1.00-1.04, 1.03-1.22, 1.92-341.04, 1.65-6.94, all P<0.05) had significant correlation with SRNS. The optimal prediction model was selected. The ROC curve cut-off=0.38, with the sensitivity of 0.83, the specificity of 0.77 and area under curve of 0.87. The calibration curve showed that the predicted probability of SRNS group occurrence was in good agreement with the actual occurrence probability, χ2=9.12, P=0.426. The clinical decision curve showed good clinical applicability. The net benefit is up to 0.2. Make the nomogram. Conclusions: The prediction model based on the 4 identified risk factors including erythrocyte sedimentation rate, suppressor T cells, D-dimer and β2-microglobulin was suitable for the early diagnosis and prediction of SRNS in children. The prediction effect was promising in clinical application.目的: 筛选儿童激素耐药型肾病综合征的临床相关因素,并构建预测模型,同时验证有效性。 方法: 回顾性分析2016年1月至2021年12月山西省儿童医院收治的111例肾病综合征患儿的临床资料,包括一般情况、临床表现、实验室检查、治疗和预后情况等。根据患儿对激素治疗是否敏感,分为激素敏感型肾病综合征和激素耐药型肾病综合征2组,两组间比较使用单因素Logistic回归分析;儿童激素耐药型肾病综合征的相关性采用多因素Logistic回归分析,采用受试者工作特征(ROC)曲线、校准曲线以及临床决策曲线评价其有效性。 结果: 111例肾病综合征患儿中男66例、女45例,年龄3.2(2.0,6.6)岁,其中激素敏感型组65例、激素耐药型组46例。单因素Logistic回归分析示,激素敏感型和激素耐药型两组患儿在红细胞沉降率、25羟维生素D、抑制性T细胞、D-二聚体、纤维蛋白降解产物、β2微球蛋白水平方面差异均有统计学意义[85(52,104)比105(85,120)mm/1 h,18(12,39)比16(12,25)nmol/L,0.23(0.19,0.27)比0.25(0.20,0.31),0.7(0.6,1.1)比1.1(0.9,1.7)g/L,3.1(2.3,4.1)比3.3(2.7,5.8)g/L,2.3(1.9,2.8)比3.0(2.5,3.7)g/L,χ2=3.73、-2.42、2.24、3.38、2.24、3.93,均P<0.05]。多因素Logistic回归分析显示,红细胞沉降率、抑制性T细胞、D-二聚体及β2微球蛋白与激素耐药型肾病综合征均有显著相关性(OR=1.02、1.12、25.61、3.38,95%CI 1.00~1.04、1.03~1.22、1.92~341.04、1.65~6.94,均P<0.05)。根据模型绘制ROC曲线示截断值为0.38,灵敏度0.83,特异度0.77,曲线下面积0.87;校准曲线显示预测激素耐药组发生概率与实际发生概率一致性较好(χ2=9.12,P=0.426);临床决策曲线显示临床适用度好,净获益最高达0.2。制作列线图。 结论: 儿童激素耐药型肾病综合征的危险因素包括红细胞沉降率、抑制性T细胞、D-二聚体及β2微球蛋白,建立预测模型适用于儿童激素耐药型肾病综合征的早期诊断及预测,预测效果较好,具有一定的临床价值。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫皮皮虾完成签到,获得积分10
刚刚
张丁完成签到,获得积分10
刚刚
852应助浏阳河采纳,获得10
刚刚
刚刚
zzzq应助顺心的怀亦采纳,获得10
刚刚
不安溪灵发布了新的文献求助20
1秒前
1秒前
2秒前
3秒前
zd完成签到,获得积分20
4秒前
李宁完成签到,获得积分10
4秒前
lyzhou发布了新的文献求助20
4秒前
4秒前
5秒前
6秒前
冰琪发布了新的文献求助10
7秒前
绿光之城发布了新的文献求助30
7秒前
7秒前
7秒前
天明发布了新的文献求助10
7秒前
我是老大应助文文尔雅采纳,获得10
8秒前
9秒前
9秒前
9秒前
知性的千秋完成签到,获得积分10
10秒前
eye完成签到,获得积分10
10秒前
10秒前
11秒前
小兔子发布了新的文献求助10
12秒前
在水一方应助粗心的凡阳采纳,获得10
12秒前
Yan应助半岛采纳,获得20
12秒前
13秒前
NexusExplorer应助开朗的觅柔采纳,获得10
13秒前
13秒前
eye发布了新的文献求助10
13秒前
zzl完成签到,获得积分10
15秒前
Jasper应助俊逸的蜜蜂采纳,获得10
15秒前
yoke完成签到,获得积分10
15秒前
11发布了新的文献求助10
15秒前
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953