Room‐Temperature Self‐Healing Soft Composite Network with Unprecedented Crack Propagation Resistance Enabled by a Supramolecular Assembled Lamellar Structure

材料科学 层状结构 自愈 复合数 复合材料 软机器人 损伤容限 弹性(材料科学) 断裂力学 模数 聚合物 无定形固体 执行机构 计算机科学 化学 有机化学 替代医学 人工智能 病理 医学
作者
Jian‐Hua Xu,Yukun Li,Tong Liu,Dong Wang,FuYao Sun,Po Hu,Lin Wang,Jiaoyang Chen,Xuebin Wang,Bowen Yao,Jiajun Fu
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (26) 被引量:109
标识
DOI:10.1002/adma.202300937
摘要

Soft self-healing materials are compelling candidates for stretchable devices because of their excellent compliance, extensibility, and self-restorability. However, most existing soft self-healing polymers suffer from crack propagation and irreversible fatigue failure due to easy breakage of their dynamic amorphous, low-energy polymer networks. Herein, inspired by distinct structure-property relationship of biological tissues, a supramolecular interfacial assembly strategy of preparing soft self-healing composites with unprecedented crack propagation resistance is proposed by structurally engineering preferentially aligned lamellar structures within a dynamic and superstretchable poly(urea-ureathane) matrix (which is elongated to 24 750× its original length). Such a design affords a world-record fracture energy (501.6 kJ m-2 ), ultrahigh fatigue threshold (4064.1 J m-2 ), and outstanding elastic restorability (dimensional recovery from 13 times elongation), and preserving low modulus (1.2 MPa), high stretchability (3200%), and high room-temperature self-healing efficiency (97%). Thereby, the resultant composite represents the best of its kind and even surpasses most biological tissues. The lamellar 2D transition-metal carbide/carbonitride (MXene) structure also leads to a relatively high in-plane thermal conductivity, enabling composites as stretchable thermoconductive skins applied in joints of robotics to thermal dissipation. The present work illustrates a viable approach how autonomous self-healing, crack tolerance, and fatigue resistance can be merged in future material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安豁发布了新的文献求助10
刚刚
www发布了新的文献求助10
1秒前
1秒前
Crystal完成签到,获得积分10
2秒前
Laus发布了新的文献求助10
2秒前
orixero应助碱性沉默采纳,获得10
2秒前
今后应助仙子狗尾巴花采纳,获得10
2秒前
tylerconan完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助隐形的易巧采纳,获得10
4秒前
独特微笑发布了新的文献求助10
4秒前
学海无涯完成签到,获得积分10
4秒前
科研小民工应助机智苗采纳,获得30
4秒前
楼梯口无头女孩完成签到,获得积分10
7秒前
7秒前
Grayball应助gg采纳,获得10
7秒前
7秒前
456发布了新的文献求助10
7秒前
8秒前
凤凰山发布了新的文献求助10
8秒前
独特的绿蝶完成签到,获得积分10
8秒前
8秒前
清歌扶酒发布了新的文献求助10
8秒前
东风完成签到,获得积分10
9秒前
10秒前
呆萌幼晴完成签到,获得积分10
10秒前
qinqiny完成签到 ,获得积分10
11秒前
11秒前
周小慧完成签到,获得积分20
11秒前
轻松的人龙完成签到,获得积分20
11秒前
小蘑菇应助yxf采纳,获得10
11秒前
1199关注了科研通微信公众号
11秒前
星辰大海应助小赞芽采纳,获得10
11秒前
郑开司09发布了新的文献求助10
12秒前
溪与芮行完成签到 ,获得积分10
12秒前
QS完成签到,获得积分10
12秒前
彭于晏应助Stanley采纳,获得10
14秒前
小二郎应助Stanley采纳,获得10
14秒前
扑通扑通通完成签到 ,获得积分10
14秒前
lgh完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762