Nanoporous multilayer graphene oxide membrane for forward osmosis metal ion recovery from spent Li-ion batteries

石墨烯 纳米孔 氧化物 材料科学 离子 渗透 化学工程 纳米孔 离子键合 纳米技术 无机化学 化学 冶金 有机化学 工程类 生物化学
作者
Jeong Pil Kim,Chae Young Go,Junhyeok Kang,Yunkyu Choi,Ju Yeon Kim,Jiwon Kim,Ohchan Kwon,Ki Chul Kim,Dae Woo Kim
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:676: 121590-121590 被引量:11
标识
DOI:10.1016/j.memsci.2023.121590
摘要

The recovery of Li and rare metals from the spent electrodes of Li-ion batteries (LIBs) is becoming increasingly important. Herein, nanoporous multilayer graphene oxide (NMG) membranes were fabricated via the confined thermal annealing method to achieve Li-ion selectivity. A graphene oxide (GO) membrane was prepared by coating the membrane with an aqueous layer of GO liquid crystal via the scalable bar coating method, followed by hot-pressing. The influence of the GO interlayer spacing and nanopore presence on the ion separation performance was investigated. The NMG membrane shows different ion permeance phenomena depending on ion concentration. The permeation rate of divalent ions (Co, Ni, Mn) through the NMG membrane was faster than that of Li ions in solution with low ionic strength, whereas the membrane was Li-ion selective in mixed ionic solutions or at high ionic strength. This result indicates that electrostatic interaction by oxygen groups is important at low ionic strength, but size exclusion by interlayer spacing and adsorption by nanopore is critical at high ionic strength. The ion permeation mechanisms were further examined based on molecular calculations, which revealed that the binding energies between the divalent ions and nanopores or basal plane of graphene were high, resulting in slow ion permeation. When the NMG membrane was combined in a forward osmosis system, Li-ion can be separated continuously from the mixture solution simulated from the spent Li-battery electrode. This approach shows the high potential of nanoporous multilayer graphene membrane for Li extraction in particular with dense pore structure and around 7 Å of d-spacing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡英宇发布了新的文献求助10
刚刚
1秒前
1秒前
花花完成签到,获得积分10
2秒前
kk123发布了新的文献求助10
2秒前
大模型应助GXJ采纳,获得20
3秒前
yhchow0204应助小朋友采纳,获得10
3秒前
yhchow0204应助小朋友采纳,获得10
3秒前
light完成签到,获得积分20
4秒前
知道发布了新的文献求助10
4秒前
4秒前
5秒前
am发布了新的文献求助30
6秒前
pitto完成签到,获得积分10
6秒前
充电宝应助light采纳,获得10
8秒前
hyy发布了新的文献求助10
8秒前
8秒前
yym完成签到,获得积分10
9秒前
9秒前
9秒前
杨杨杨发布了新的文献求助10
10秒前
芒果好高给芒果好高的求助进行了留言
11秒前
黑大帅完成签到,获得积分10
11秒前
booooo发布了新的文献求助10
11秒前
12秒前
辣条大王完成签到 ,获得积分20
12秒前
搜集达人应助健康的幻珊采纳,获得10
12秒前
英俊的铭应助申熙辰采纳,获得10
13秒前
MYYYZ发布了新的文献求助10
13秒前
dqz发布了新的文献求助10
13秒前
amumu完成签到,获得积分10
14秒前
钱大大完成签到 ,获得积分10
14秒前
gyyzj发布了新的文献求助10
15秒前
hyy完成签到,获得积分10
15秒前
乐乐应助txy采纳,获得10
15秒前
化学胖子完成签到,获得积分10
15秒前
17秒前
一昂杨完成签到 ,获得积分10
18秒前
夏来应助cultromics采纳,获得10
18秒前
云森完成签到,获得积分10
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570