亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Palliative Care Practices Through Machine-Learning Prediction of 90-Day Risk of Mortality Following Hospitalization

软件部署 机器学习 人工智能 缓和医疗 医学 医疗保健 人口 医疗急救 计算机科学 护理部 经济增长 环境卫生 操作系统 经济
作者
Thein Hlaing Oo,Oscar C. Marroquin,Jeffrey McKibben,Jane O. Schell,Robert M. Arnold,Kevin E. Kip
出处
期刊:NEJM catalyst innovations in care delivery [New England Journal of Medicine]
卷期号:4 (1) 被引量:1
标识
DOI:10.1056/cat.22.0214
摘要

SummaryPatients and families rely on clinicians to provide candid, transparent, and accurate data-driven prognostic information to make informed, value-based decisions about serious illness. In this realm, there has been a proliferation of the use of machine-learning algorithms within health care systems because of an overall desire to develop and validate predictive models for short- and long-term mortality and to provide optimal patient care across a range of modifiable conditions and clinical populations. In this study, the authors describe the use of machine-learning algorithms that are embedded into the University of Pittsburgh Medical Center (UPMC) electronic health record system to generate 90-day mortality risk classifications for hospitalized patients. The system automatically triggers clinician alerts for intermediate- and high-risk groups of patients so that the care team can provide goals-of-care (GOC) conversations and palliative care consultations. The machine-learning study population included 611,543 unique patients 18 years of age and older hospitalized in the UPMC system between January 1, 2015, and December 31, 2019. The development and validation of the predictive model for the 90-day risk of mortality from the date of hospital admission included iterative engagement with UPMC clinicians and health system stakeholders and gradient boosting decision tree–based supervised machine learning. Prior to deployment in July 2021, an average of 78 GOC conversations took place each month with patients deemed to be at moderate or high risk for 90-day mortality. After deployment, that number more than doubled to an average of 166 per month and has been sustained for more than a year. The authors also provide analytical and operational recommendations based on their approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的似狮完成签到,获得积分10
1秒前
2秒前
白桦林泪完成签到,获得积分10
2秒前
5秒前
酷波er应助也许。。。采纳,获得10
30秒前
Perion完成签到 ,获得积分10
40秒前
1分钟前
Ava应助Omni采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
安逸寻找发布了新的文献求助10
2分钟前
2分钟前
Omni发布了新的文献求助10
2分钟前
孟长歌发布了新的文献求助30
3分钟前
3分钟前
4分钟前
huajinoob完成签到,获得积分10
4分钟前
4分钟前
云瑾发布了新的文献求助10
4分钟前
4分钟前
5分钟前
也许。。。完成签到,获得积分10
5分钟前
当时只道是寻常完成签到 ,获得积分10
5分钟前
5分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
6分钟前
东方发布了新的文献求助10
6分钟前
Ji完成签到,获得积分10
6分钟前
6分钟前
小二郎应助刘小六六六采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
cc发布了新的文献求助10
8分钟前
mm完成签到 ,获得积分10
8分钟前
愉快谷芹完成签到 ,获得积分10
8分钟前
任元元完成签到 ,获得积分10
8分钟前
cc完成签到,获得积分10
8分钟前
DMKurisu完成签到 ,获得积分10
8分钟前
上官若男应助DMKurisu采纳,获得10
9分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375007
求助须知:如何正确求助?哪些是违规求助? 2991524
关于积分的说明 8746606
捐赠科研通 2675510
什么是DOI,文献DOI怎么找? 1465710
科研通“疑难数据库(出版商)”最低求助积分说明 677903
邀请新用户注册赠送积分活动 669551