烘烤
风味
化学
小虾
吸附
傅里叶变换红外光谱
食品科学
沸腾
功能性食品
化学工程
有机化学
生物
物理化学
工程类
渔业
作者
Haritha Duppeti,Sachindra Nakkarike Manjabhatta,Bettadaiah Bheemanakere Kempaiah
标识
DOI:10.1016/j.foodres.2022.112296
摘要
Proteins contribute to the flavor release and texture of foods besides their nutritional attributes. However, processing affects the protein structural conformation and, thus, their functional properties. White shrimp proteins (WSP) are well known for their nutritional and functional properties and limited attention has been paid to the flavor adsorption properties of WSP. This study investigated the effects of processing methods such as microwave drying, hot air drying, roasting, and boiling on the structural (secondary and tertiary) changes and physicochemical, functional, and flavor adsorption properties of white shrimp proteins (WSP). Structural changes of WSPs were evaluated by Fourier Transform Infrared (FTIR) spectroscopy, fluorescence spectroscopy, and sulfhydryl bond content. Results revealed that the processing triggered structural changes that affected the functional properties of WSP. The highest surface hydrophobicity (H0) of WSP in boiling (58.27 ± 1.68) and microwave drying (39.83 ± 0.83) caused increased emulsifying properties and decreased water solubility. The increased content of α-helix and random coils leads to cross-linking and protein aggregation in hot air drying (21.62 ± 0.37 %) and roasting (24.30 ± 0.24 %), which leads to low H0 and high foaming properties. Processing has increased the flavor adsorption ability of WSP. Among all the processing methods, boiling has shown the highest flavor adsorption potential, followed by microwave drying. The findings broaden the scope of techno-functional properties of WSP in the food industry by thermal treatment modification.
科研通智能强力驱动
Strongly Powered by AbleSci AI