Influence of repeated freeze-thaw treatments on the oxidation and degradation of muscle proteins from mirror carp (Cyprinus carpio L.), based on myofibrillar protein structural changes
The effects of repeated freeze-thaw (F-T) treatments on the oxidation and degradation of muscle proteins from mirror carp (Cyprinus carpio L.) were investigated. The myofibrillar fragmentation index, trichloroacetic acid-soluble peptides, total volatile basic nitrogen, amino nitrogen, and carbonyl content of the samples significantly increased (P < 0.05). However, the samples showed a significant reduction in the fragmentation index, myofibrillar protein (MP) solubility, and total sulfhydryl content after five F-T cycles (P < 0.05). Moreover, the sodium dodecyl sulfate-polyacrylamide gel electrophoresis bands of the MP faded because of the oxidation and degradation of the protein with increasing F-T cycles. By the fifth F-T cycle, the α-helix and β-turn content significantly decreased by 10.41 % and 5.72 %, respectively (P < 0.05), whereas the β-sheet and random coil content significantly rose by 7.66 % and 8.47 %, respectively (P < 0.05). Furthermore, the intrinsic fluorescence of the MP showed a substantial decrease in intensity and a redshift. In summary, iterative F-T cycles destroyed the MP structure and caused the oxidation and degradation of muscle proteins from mirror carp.