数学
插值(计算机图形学)
拉格朗日插值法
变量(数学)
学位(音乐)
GSM演进的增强数据速率
应用数学
牙石(牙科)
差速器(机械装置)
纯数学
数学分析
域代数上的
多项式的
人工智能
运动(物理)
物理
工程类
航空航天工程
医学
牙科
计算机科学
声学
作者
Ana Alonso Rodríguez,Ludovico Bruni Bruno,Francesca Rapetti
标识
DOI:10.1016/j.cam.2023.115117
摘要
It is well known that Lagrange interpolation based on equispaced nodes can yield poor results. Oscillations may appear when using high degree polynomials. For functions of one variable, the most celebrated example has been provided by Carl Runge in 1901, who showed that higher degrees do not always improve interpolation accuracy. His example was then extended to multivariate calculus and in this work we show that it is meaningful, in an appropriate sense, also for Whitney edge elements, namely for differential 1-forms.
科研通智能强力驱动
Strongly Powered by AbleSci AI